美國(guó)一項(xiàng)新研究發(fā)現(xiàn),老鼠大腦一小塊區(qū)域中的神經(jīng)系統(tǒng)類似互聯(lián)網(wǎng)結(jié)構(gòu),。這對(duì)大腦神經(jīng)系統(tǒng)是個(gè)分等級(jí)結(jié)構(gòu)的傳統(tǒng)理論提出挑戰(zhàn),。
新發(fā)現(xiàn)
美國(guó)南加州大學(xué)神經(jīng)系統(tǒng)科學(xué)家拉里·斯旺森和理查德·湯普森隔離起老鼠大腦中與愉悅和獎(jiǎng)勵(lì)相關(guān)的伏核區(qū),在同一點(diǎn)同時(shí)注入兩枚“示蹤劑”,,分別用于顯示信號(hào)去向和來源,。
“示蹤劑”跟隨信號(hào)移動(dòng),但不會(huì)干擾信號(hào)移動(dòng),,能發(fā)光,,可在顯微鏡下觀察到。
他們發(fā)現(xiàn),,信號(hào)在一個(gè)個(gè)圈組成的網(wǎng)絡(luò)中移動(dòng),,這個(gè)網(wǎng)絡(luò)“不是一個(gè)有上下之分的等級(jí)架構(gòu)”。
湯普森花費(fèi)8年多時(shí)間發(fā)明和完善這次研究所用示蹤方法,。
其他示蹤方法大多只能在一個(gè)位置跟蹤一個(gè)方向一個(gè)信號(hào),。
“我們可以在同一個(gè)動(dòng)物身上同時(shí)觀察一個(gè)大腦回路中的4個(gè)連接,”斯旺森說,。
學(xué)術(shù)界假設(shè)過大腦中神經(jīng)系統(tǒng)類似互聯(lián)網(wǎng)結(jié)構(gòu),,但先前沒有實(shí)驗(yàn)證實(shí)過這種假設(shè)。
研究報(bào)告由《國(guó)家科學(xué)院院刊》(PNAS)發(fā)表,。
舊理論
研究人員先前認(rèn)為,,大腦中的神經(jīng)系統(tǒng)好像一個(gè)大企業(yè),可以繪成一個(gè)從中樞部門分叉到下面一個(gè)個(gè)小部門的直線聯(lián)系圖,。
英國(guó)廣播公司(BBC)8月11日援引斯旺森的話報(bào)道:“‘從上到下理論’在已有實(shí)驗(yàn)神經(jīng)科學(xué)文獻(xiàn)中占有驚人的統(tǒng)治地位,,這一理論可上溯至19世紀(jì)。”
斯旺森說,,大腦中互聯(lián)網(wǎng)式結(jié)構(gòu)的存在可以解釋大腦能克服局部損傷的現(xiàn)象,,“你可以拿掉互聯(lián)網(wǎng)任何一個(gè)單獨(dú)部分,但網(wǎng)絡(luò)其他部分照常工作”,,神經(jīng)系統(tǒng)同樣,,沒法說某一部分絕對(duì)不可或缺,。
下一步
斯旺森說,眼下至少在老鼠大腦伏核發(fā)現(xiàn)不同以往認(rèn)為的神經(jīng)系統(tǒng)結(jié)構(gòu),,今后可以用這次研究中使用的示蹤法觀察其他部位,,最終繪出整個(gè)大腦神經(jīng)網(wǎng)絡(luò)圖。
斯旺森說,,繪制整個(gè)大腦神經(jīng)網(wǎng)絡(luò)圖是個(gè)無比復(fù)雜的工作,,目前不能肯定這個(gè)圖對(duì)解答意識(shí)和認(rèn)知方面難題會(huì)產(chǎn)生何種影響。
“不過,,好比人類基因組項(xiàng)目,。人們相信找出人類脫氧核糖核酸(DNA)完整序列是研究生物學(xué)的一塊基石,無論花費(fèi)多長(zhǎng)時(shí)間都要完成這項(xiàng)工作,,”斯旺森說,。(生物谷Bioon.com)
生物谷推薦原文出處:
PNAS doi: 10.1073/pnas.1009112107
Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture
Richard H. Thompson and Larry W. Swanson1
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
The brain is usually described as hierarchically organized, although an alternative network model has been proposed. To help distinguish between these two fundamentally different structure-function hypotheses, we developed an experimental circuit-tracing strategy that can be applied to any starting point in the nervous system and then systematically expanded, and applied it to a previously obscure dorsomedial corner of the nucleus accumbens identified functionally as a “hedonic hot spot.” A highly topographically organized set of connections involving expected and unexpected gray matter regions was identified that prominently features regions associated with appetite, stress, and clinical depression. These connections are arranged as a longitudinal series of circuits (closed loops). Thus, the results do not support a rigidly hierarchical model of nervous system organization but instead indicate a network model of organization. In principle, the double-coinjection circuit tracing strategy can be applied systematically to the rest of the nervous system to establish the architecture of the global structural wiring diagram, and its abstraction, the connectome.