美國科學(xué)家已經(jīng)研制出利用思維進(jìn)行控制的電腦,,這項(xiàng)突破性成就也許有一天會(huì)為那些不會(huì)說話或癱瘓人士提供幫助。
測(cè)試過程中,,試驗(yàn)參與者只要在腦中默念,,就能移動(dòng)顯示器上的指針。對(duì)那些因?yàn)槟X損傷或中風(fēng)而失去語言能力的人來說,,這具有重大意義,。它能幫助殘疾人控制輪椅或機(jī)械臂(robotic arm),甚至?xí)氐赘淖冸娔X游戲業(yè),。美國密蘇里州圣路易斯華盛頓大學(xué)醫(yī)學(xué)院的埃里克·魯塔德博士說:“最早的一個(gè)例子稱為‘讀心術(shù)’,,即探測(cè)人內(nèi)心深處的想法,它涉及的范圍非常有限,。”
魯塔德利用ECoG技術(shù)把參與者的大腦與電腦連接在一起,。他們把電極植入到這些人的大腦里,記錄大腦的電活動(dòng),。以前人們利用這項(xiàng)技術(shù)確定導(dǎo)致癲癇的大腦區(qū)域,,并研究出有效的治療方法。研究人員對(duì)4名年齡在36歲到48歲的患者進(jìn)行研究,。在檢測(cè)過程中,,電極發(fā)出的信號(hào)被接收到,并被記錄在電腦上,。這項(xiàng)研究成果發(fā)表在《神經(jīng)工程學(xué)期刊》上,,試驗(yàn)期間參與者都坐在電腦顯示器前,通過說或者想事先確定的詞來移動(dòng)一個(gè)指針,。例如,,詞“啊”是讓指針右轉(zhuǎn),其他詞“咿”和“哦”是讓指針向上,、向下和向左轉(zhuǎn),。
研究人員表示,參與者很快就能熟練控制電腦,不用進(jìn)行太多培訓(xùn),。他們希望以后能把植入物永久性植入到患者大腦,,幫助他們與人交流,甚至利用電腦了解他們的想法,。魯塔德說:“我們不僅希望借助這項(xiàng)技術(shù)發(fā)現(xiàn)你的內(nèi)心深處何時(shí)說了狗,、樹、工具或其他詞,,而且很想了解你的真正想法,。讀心術(shù)是一項(xiàng)令人既興奮,又害怕的技術(shù),,但是它對(duì)那些無法與人交流和存在其他殘疾的人來說,,具有巨大潛能。”
過去10年間科學(xué)家已經(jīng)開發(fā)了很多通過思維或腦機(jī)接口控制的電子設(shè)備,。該技術(shù)曾被用來控制輪椅,、電視遙控器和語音合成器。大約50%的美國截肢患者配備了由思想控制的義肢,。今年2月,,美國醫(yī)生公布了最新版本的義肢,它通過改變大腦信號(hào)的傳輸路線,,避開受損神經(jīng),,利用完好無損的健全肌肉發(fā)送信號(hào)。佩戴者能通過思維把拇指和食指并攏在一起,、抬起前臂和彎曲肘關(guān)節(jié),。(生物谷Bioon.com)
生物谷推薦原文出處:
J. Neural Eng. doi: 10.1088/1741-2560/8/3/036004
Using the electrocorticographic speech network to control a brain–computer interface in humans
Eric C Leuthardt1,2,8, Charles Gaona1, Mohit Sharma1, Nicholas Szrama1,2, Jarod Roland2, Zac Freudenberg3, Jamie Solis2, Jonathan Breshears2 and Gerwin Schalk2,4,5,6,7
Electrocorticography (ECoG) has emerged as a new signal platform for brain–computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.