最近一期《自然》雜志刊發(fā)的一篇論文稱,DISC1蛋白在大腦皮質(zhì)發(fā)育的兩個關鍵環(huán)節(jié)起著重要作用,,其功能可動態(tài)調(diào)節(jié),。研究人員表示,這一發(fā)現(xiàn)意味著精神分裂癥的治療有了新的靶點,,針對DISC1蛋白缺陷的新藥研制成為可能,。
精神分裂癥是一種常見的精神疾病,患者會出現(xiàn)幻覺,、妄想等癥狀,,不僅嚴重影響患者的身心健康,同時也大大增加了社會負擔,影響社會穩(wěn)定和經(jīng)濟發(fā)展,。普遍認為,,精神分裂癥與大腦皮質(zhì)缺陷有關,而DISC1蛋白在大腦皮質(zhì)的發(fā)育及功能發(fā)揮方面又扮演著重要角色,,因此其可能是精神分裂癥,、情緒障礙和自閉癥等精神疾病的主要易感因素。但對于該蛋白在精神疾病中的作用機理,,則不十分清楚,。
一個由英、美和日三國研究人員組成的國際研究小組研究發(fā)現(xiàn),,在大腦皮質(zhì)發(fā)育的兩個關鍵環(huán)節(jié)中,,DISC1蛋白扮演著重要角色,其磷酸化過程起著分子開關的作用,。小鼠實驗表明,,DISC1蛋白一方面會維持有絲分裂祖細胞的增殖,另一方面則會刺激有絲分裂期后的神經(jīng)細胞遷移,,從而保證腦功能的正常發(fā)揮,。一旦DISC1蛋白出現(xiàn)問題,細胞增殖和遷移都會受到影響,。
研究人員指出,,學界對于大腦皮質(zhì)中祖細胞增殖和神經(jīng)細胞遷移相關的調(diào)節(jié)機制一直知之甚少,新發(fā)現(xiàn)則有助于彌補這一空白,。大腦皮質(zhì)中DISC1蛋白的雙重功能表明,,該蛋白磷酸化是精神分裂癥的一個主要易感因素,因而它也成為一個精神分裂癥治療的潛在靶點,。研究表明,,DISC1蛋白的功能是可以動態(tài)調(diào)節(jié)的,這意味著開發(fā)出一種能夠校正DISC1蛋白缺陷的新藥將成為可能,。(生物谷Bioon.com)
生物谷推薦原文:
Nature DOI:10.1038/nature09859
DISC1-dependent switch from progenitor proliferation to migration in the developing cortex
Koko Ishizuka,1 Atsushi Kamiya,1 Edwin C. Oh,2 Hiroaki Kanki,3 Saurav Seshadri,1 Jon F. Robinson,2 Hannah Murdoch,4 Allan J. Dunlop,4 Ken-ichiro Kubo,5 Keiko Furukori,1 Beverly Huang,1 Mariela Zeledon,1 Akiko Hayashi-Takagi,1 Hideyuki Okano,3 Kazunori Nakajima,5 Miles D. Houslay,4 Nicholas Katsanis2 & Akira Sawa1, 6
Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons in mice. Unphosphorylated DISC1 regulates canonical Wnt signalling via an interaction with GSK3β, whereas specific phosphorylation at serine 710 (S710) triggers the recruitment of Bardet–Biedl syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, whereas DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, whereas a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and indicate that phosphorylation of this protein at S710 activates a key developmental switch.