據(jù)美國物理學(xué)家組織網(wǎng)報道,,華盛頓大學(xué)圣·路易斯醫(yī)學(xué)院科學(xué)家開發(fā)出一種迅速探測腦中髓磷脂含量的新方法,,可用于繪制腦細胞的髓鞘分布圖,,而此前要分析髓鞘分布只能通過解剖,。新方法有助于繪制更準確全面的腦線路圖,,增進人們對大腦工作原理的理解,,并有助于開發(fā)診斷和治療腦疾病的方法。相關(guān)研究發(fā)表在近日出版的《神經(jīng)科學(xué)期刊》上,。
該研究是人腦連接組項目(Human Connectome Project)的一部分,,目標是用5年時間繪制出人腦線路圖。對于科學(xué)家來說,,探測大腦的結(jié)構(gòu)和功能,,就像探險家來到外星球,任何標志物如山脈,、河流,、森林都有助于摸清當?shù)厍闆r。要繪制出完整的大腦結(jié)構(gòu)路線圖,,不能錯過任何標志。
髓磷脂含量分布是表示神經(jīng)元分支和信息傳遞速度的重要指標,。髓鞘是包在神經(jīng)元分支外面的白色膜層,,成分是髓磷脂。神經(jīng)元分支也叫神經(jīng)突,,包括軸突,、樹突、突觸等,,許多分支被髓鞘包裹,,有髓鞘包裹的分支其信號傳遞更快,可達到100米/秒,。
以前研究髓鞘分布細微差異的唯一途徑是尸體解剖,,將大腦取出切片,然后對髓磷脂染色分析,。新方法將當前的兩種磁共振成像(MRI)掃描技術(shù)結(jié)合起來,,利用掃描數(shù)據(jù)來繪制腦中的髓磷脂分布圖,用不同顏色代表髓鞘分布密度水平,如紅色和黃色表示髓磷脂含量高的區(qū)域,,藍色,、紫色和黑色表示含量水平較低,定位更加精確迅速,,通過MRI掃描10分鐘內(nèi)就能得到數(shù)據(jù),。
“大腦約有900億個神經(jīng)元,而神經(jīng)元之間傳輸信息的各級分支多達150萬億,。”華盛頓大學(xué)解剖與神經(jīng)生物學(xué)院的大衛(wèi)·萬·艾森說,,“新方法對于理解這一復(fù)雜器官非常有用,髓磷脂地圖會有助于人們進一步理解大腦終端是怎樣跟其他部位聯(lián)系的,。”
“人們普遍認為,,腦皮層都是由完全一樣的信息處理器組成,”萬·艾森說,,“但根據(jù)我們繪制的圖像,,表明各個腦區(qū)明顯不同。”
研究小組發(fā)現(xiàn),,髓磷脂密度水平最高的腦區(qū),,與眼睛等五種感官信息處理初期以及運動控制相關(guān)聯(lián),大量神經(jīng)元擁擠在這些區(qū)域,,但它們之間的連接卻更簡單,。科學(xué)家推測,,這些腦區(qū)主要是通過“并行處理”的方式來處理信息,,即每個細胞不是獨立地解決一個復(fù)雜問題,而是分成不同的工作組,,同時處理問題的不同部分,。髓磷脂密度更低的地方包括那些與語言能力、思考能力和使用工具能力相關(guān)的區(qū)域,,這些區(qū)域的腦細胞密度較低,,每個細胞都比較大,與周邊細胞之間的連接也更復(fù)雜,。
萬·艾森還指出,,新方法能讓參與“人腦連接組計劃”的各個小組普遍掌握,快速繪制髓鞘分布圖,。利用這種髓鞘分布制圖技術(shù)和其他各種分析技術(shù),,項目組成員能更快獲得數(shù)據(jù),完成全部人腦圖譜的制作,。(生物谷 Bioon.com)
doi:10.1523/?JNEUROSCI.2180-11.2011
PMC:
PMID:
Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI
Matthew F. Glasser and David C. Van Essen
Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.