近日,哈佛醫(yī)學(xué)院兒童醫(yī)院的研究者發(fā)現(xiàn)僅僅大腦組織的突變可引起側(cè)巨腦癥(HMG),,這種側(cè)巨腦癥也就是一半大腦增大以及功能失調(diào),,最終導(dǎo)致智障以及嚴(yán)重癲癇癥,。研究者的這項(xiàng)研究刊登在了4月12日的國(guó)際雜志Neuron上,對(duì)于精神疾病的治療提供了很好的線索和模板,。大腦組織的突變可以由遺傳產(chǎn)生也可以后天自發(fā)產(chǎn)生,,遺傳突變遍布于人體的全部細(xì)胞之中,但是一些自發(fā)的突變是在機(jī)體發(fā)育的過程中產(chǎn)生的,,而且僅僅發(fā)生在某些器官的細(xì)胞中,,一段時(shí)間之后便會(huì)因?yàn)榇竽X組織的變異從而引起精神性的疾病。
研究者Ann Poduri表示,,HMG患者個(gè)體大腦驚人的不對(duì)稱現(xiàn)象,,長(zhǎng)時(shí)間來被認(rèn)為是由自發(fā)突變所引起的,嚴(yán)格意義上來說,,是由一般大腦組織的自發(fā)變異所引起的,。HMG病人每天都會(huì)有一段時(shí)間疾病發(fā)作,會(huì)嚴(yán)重干擾其認(rèn)知能力的發(fā)育,,對(duì)此,,醫(yī)生也只能孤注一擲,移除編譯的腦組織從而來控制病人抽搐發(fā)作,。很幸運(yùn)的是,,醫(yī)生多次都能夠成功實(shí)施手術(shù)來控制病人發(fā)作以及使得兒童患者變的類似常人一樣。
研究者Pudiri在HMG患者大腦中識(shí)別出了AKT3基因,,以前研究表明,,該基因可以控制大腦的尺寸大小,AKT3突變后將嚴(yán)重影響患者的大腦尺寸,,但對(duì)于血細(xì)胞的影響并不明顯,。因此,這種突變是自發(fā)的,并不是先天遺傳的,。研究者的研究數(shù)據(jù)揭示了,,自發(fā)突變可以導(dǎo)致AKT3基因的激活異常,從而引起一半大腦組織的過度生長(zhǎng),。HMG患者大腦的尺寸和結(jié)構(gòu)不同有可能一部分是因?yàn)橥蛔儼l(fā)生在大腦發(fā)育的階段,。研究者還表示:“對(duì)我們來講,值得注意的是,,這是第一種因?yàn)閮H限于大腦組織突變所引起的突變疾病,,當(dāng)然了,還有很多因?yàn)樽园l(fā)突變所引起的癲癇癥和精神性疾病,,我們必須將不同類疾病區(qū)分開,。
這項(xiàng)研究由霍華休斯醫(yī)學(xué)研究中心、美國(guó)國(guó)家神經(jīng)學(xué)疾病與中風(fēng)研究院以及國(guó)立精神衛(wèi)生研究所支持,。(生物谷:T.Shen編譯)
Copyright ©版權(quán)歸生物谷/T.Shen所有,,若未得到T.Shen許可,請(qǐng)勿轉(zhuǎn)載,。
doi:10.1016/j.neuron.2012.03.010
PMC:
PMID:
Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations
Annapurna Poduri, Gilad D. Evrony, Xuyu Cai, Princess Christina Elhosary, Rameen Beroukhim, Maria K. Lehtinen, L. Benjamin Hills, Erin L. Heinzen, Anthony Hill, R. Sean Hill, Brenda J. Barry, Blaise F.D. Bourgeois, James J. Riviello, A. James Barkovich, Peter M. Black, Keith L. Ligon, Christopher A. Walsh
Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that two out of eight HMG samples showed trisomy of chromosome 1q, which encompasses many genes, including AKT3, a gene known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G→A, creating p.E17K) that was not present in the patient's blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralog in the brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to the brain could represent an important cause of complex neurogenetic disease