6月13日,,上海生科院神經(jīng)所張鳴沙研究組在Journal of Neuroscience雜志發(fā)表了題為“Asymmetric influence of egocentric representation onto allocentric perception”的文章,。論文報道了他們通過心理物理學的實驗方法發(fā)現(xiàn)了兩種坐標系相互作用的機理,。
空間定位是動物生存最重要的認知功能之一。為了定位物體在環(huán)境中的空間位置,,我們不僅需要依賴于自我中心坐標系,,同時也依賴于物體中心坐標系。盡管我們已經(jīng)知道不同的神經(jīng)環(huán)路參與了來源于不同空間坐標系的空間信息的編碼,,對于它們之間如何相互影響所知甚少,。
在這項研究中,張鳴沙研究組設計了一項位置辨別的行為實驗,。試驗要求健康被試者依賴于視覺刺激在物體中心坐標系中的空間位置做出反應,,忽略其在自我中心坐標系位置。他們通過觀察實驗被試在兩種實驗條件(兩種空間坐標系位置一致(compatible) 和不一致(incompatible)下的反應時間,,發(fā)現(xiàn)自我中心坐標系空間信息以三種形式顯著影響著物體中心坐標系空間信息的處理:1,,在同樣的自我中心坐標系位置上,物體中心坐標系空間信息的處理在compatible條件下顯著快于在incompatible條件下,;2,,隨著物體的空間位置在自我中心坐標系上離視中心越遠,物體中心坐標系空間位置的感知在incompatible 條件下越來越慢,,而在compatible 條件下基本不變,; 3,這種影響在左側(cè)視野明顯大于在右側(cè)視野,。
該論文首次報道了自我中心坐標系的空間信息對物體中心坐標系空間信息的處理速度的影響,。此外,實驗結(jié)果還首次在行為層面上證實了右半球比左半球接受更多來自于同側(cè)的空間信息的輸入,,這也為對側(cè)空間忽視多數(shù)發(fā)生在右腦損傷的病人提供了合理的解釋,。簡而言之,該研究對大腦空間感知機制,,特別是大腦如何整合來自兩種不同坐標系的空間信息,,提供新的見解,,同時也為大腦損傷病人的對側(cè)空間忽視的病癥的探測提供了新的可能方式。
該課題由博士生周陽和研究助理劉一寧在張鳴沙研究員指導下完成,。課題受科技部“973”項目,、中國科學院“百人計劃”,神經(jīng)科學國家重點實驗室以及上海浦江計劃等資助,。(生物谷Bioon.com)
doi:10.1523/JNEUROSCI.0829-12.2012
PMC:
PMID:
Asymmetric Influence of Egocentric Representation onto Allocentric Perception
Yang Zhou1,*, Yining Liu2,*, Wangzikang Zhang3, and Mingsha Zhang1
Objects in the visual world can be represented in both egocentric and allocentric coordinates. Previous studies have found that allocentric representation can affect the accuracy of spatial judgment relative to an egocentric frame, but not vice versa. Here we asked whether egocentric representation influenced the processing speed of allocentric perception. We measured the manual reaction time of human subjects in a position discrimination task in which the behavioral response purely relied on the target's allocentric location, independent of its egocentric position. We used two conditions of stimulus location: the compatible condition—allocentric left and egocentric left or allocentric right and egocentric right; the incompatible condition—allocentric left and egocentric right or allocentric right and egocentric left. We found that egocentric representation markedly influenced allocentric perception in three ways. First, in a given egocentric location, allocentric perception was significantly faster in the compatible condition than in the incompatible condition. Second, as the target became more eccentric in the visual field, the speed of allocentric perception gradually slowed down in the incompatible condition but remained unchanged in the compatible condition. Third, egocentric-allocentric incompatibility slowed allocentric perception more in the left egocentric side than the right egocentric side. These results cannot be explained by interhemispheric visuomotor transformation and stimulus-response compatibility theory. Our findings indicate that each hemisphere preferentially processes and integrates the contralateral egocentric and allocentric spatial information, and the right hemisphere receives more ipsilateral egocentric inputs than left hemisphere does.