美國(guó)弗吉尼亞大學(xué)通過(guò)研究果蠅幼蟲(chóng)的視覺(jué)系統(tǒng)發(fā)現(xiàn),,在“觀看”時(shí),,視力的重要性可能遠(yuǎn)不如大腦把光點(diǎn)加工處理成復(fù)雜圖像的能力,。相關(guān)論文發(fā)表在最近的《自然·通訊》雜志網(wǎng)站上。
果蠅幼蟲(chóng)的眼睛只有24個(gè)光受體(人眼包含的光受體超過(guò)1.25億),,從它們眼睛輸入的光勉強(qiáng)夠大腦把這些光點(diǎn)加工成像,。弗吉尼亞大學(xué)文理學(xué)院神經(jīng)生物學(xué)家巴利·康德倫領(lǐng)導(dǎo)的研究小組在研究果蠅幼蟲(chóng)的神經(jīng)系統(tǒng)時(shí),發(fā)現(xiàn)了一個(gè)有趣的現(xiàn)象:當(dāng)把一條幼蟲(chóng)控制在培養(yǎng)皿底部時(shí),,它會(huì)用力扭動(dòng)以擺脫控制,,而其他幼蟲(chóng)就會(huì)被吸引到它身邊。這一現(xiàn)象令人吃驚,,因?yàn)樗鼈儙缀跏窍棺?,視力極其有限。
顯然其他幼蟲(chóng)是看到了受困幼蟲(chóng)的扭動(dòng)才爬過(guò)去,。研究人員發(fā)現(xiàn),,這些幼蟲(chóng)會(huì)來(lái)回?fù)u擺它們的頭,以一種類似于掃描的方式來(lái)探測(cè)事物,,并非只能通過(guò)聽(tīng)聲音,、聞氣味或感受震動(dòng)的方式來(lái)感知同伴,。
為進(jìn)一步研究幼蟲(chóng)是怎樣看見(jiàn)這種小動(dòng)作的,他們讓幼蟲(chóng)觀看一段受困幼蟲(chóng)扭動(dòng)的視頻,,以排除震動(dòng),、聲音和氣味的影響。他們發(fā)現(xiàn),,幼蟲(chóng)仍能探測(cè)并找到在視頻里掙扎的幼蟲(chóng),。但如果放慢或加快視頻的速度,幼蟲(chóng)就會(huì)更少地或根本不會(huì)被吸引到視頻里幼蟲(chóng)旁邊,。死亡的真實(shí)幼蟲(chóng)或另一種動(dòng)物的被困幼蟲(chóng),,也不能吸引它們。它們發(fā)現(xiàn)昏暗中的受困幼蟲(chóng)也很困難,。
“這讓我們重新思考,,對(duì)于能否‘看見(jiàn)’,視覺(jué)輸入可能不如其背后的大腦那么重要,。”康德倫說(shuō),,“果蠅幼蟲(chóng)能只用24個(gè)光點(diǎn),并把這些光點(diǎn)處理成可以認(rèn)知的圖像,。”
康德倫認(rèn)為,,果蠅幼蟲(chóng)靠快速擺動(dòng)頭部來(lái)掃描審視,如此能收集更多光點(diǎn),,讓大腦構(gòu)建出一幅活動(dòng)的全景圖,,清晰到足以“看見(jiàn)”事物。搖頭掃描能幫幼蟲(chóng)把更多視覺(jué)輸入收集在一起,,那些嚴(yán)重視力下降的人在光線昏暗時(shí)也常常來(lái)回?cái)[動(dòng)他們的頭,,以此采集足夠的光線來(lái)形成大腦圖像。
康德倫表示,,果蠅可以是一種研究神經(jīng)元的絕佳模型,,它們只有20000個(gè)神經(jīng)元,人類有近1000億個(gè),,但二者的神經(jīng)工作原理卻有很多相似之處,。他們正在繪制果蠅的完整神經(jīng)系統(tǒng),將幫助人們更好地理解動(dòng)物,,包括人類的神經(jīng)元在處理信息,、加工圖像時(shí)所起的作用。(生物谷Bioon.com)
doi: 10.1038/ncomms2174
PMC:
PMID:
The simple fly larval visual system can process complex images
Justice ED, Macedonia NJ, Hamilton C, Condron B.
Animals that have simple eyes are thought to only detect crude visual detail such as light level. However, predatory insect larvae using a small number of visual inputs seem to distinguish complex image targets. Here we show that Drosophila melanogaster larvae, which have 12 photoreceptor cells per hemisphere, are attracted to distinct motions of other, tethered larvae and that this recognition requires the visual system but not the olfactory system. In addition, attraction to tethered larvae still occurs across a clear plastic barrier, does not occur significantly in the dark and attraction occurs to a computer screen movie of larval motion. By altering the artificial attractant movie, we conclude that visual recognition involves both spatial and temporal components. Our results demonstrate that a simple but experimentally tractable visual system can distinguish complex images and that processing in the relatively large central brain may compensate for the simple input.