2012年12月01日 訊 /生物谷BIOON/ --來(lái)自美國(guó)紐約大學(xué)蘭貢醫(yī)學(xué)中心(NYU Langone Medical Center)的研究人員鑒定出兩個(gè)基因參與建立呼吸所需的神經(jīng)元回路。他們的發(fā)現(xiàn)可能有助于人們開(kāi)發(fā)出治療脊髓損傷和諸如肌肉萎縮性側(cè)索硬化癥(amyotrophic lateral sclerosis, ALS)之類的神經(jīng)退化性疾病的療法。相關(guān)研究結(jié)果發(fā)表在2012年12月那期的Nature Neuroscience期刊上,。
這項(xiàng)研究鑒定出一種分子密碼能夠區(qū)分一組控制肌肉的被稱作膈神經(jīng)運(yùn)動(dòng)柱(phrenic motor column, PMC)的神經(jīng)元。這些細(xì)胞可能是人體最重要的運(yùn)動(dòng)神經(jīng)元,。
PMC神經(jīng)元沿著它們的成束軸突持續(xù)傳遞電化學(xué)信號(hào)到隔膜肌上,從而允許肺部按照自然的呼吸節(jié)律進(jìn)行擴(kuò)張和放松,。論文通信作者Jeremy Dasen博士說(shuō),“我們?nèi)缃駬碛幸幌盗蟹肿訕?biāo)記物來(lái)區(qū)分PMC神經(jīng)元和其他的運(yùn)動(dòng)神經(jīng)元群體,,這樣我們就能夠詳細(xì)地研究它們和尋找出選擇性地增加它們存活的方法,。”PMC神經(jīng)元退化是患有ALS和脊髓損傷的病人的主要原因。
為了在小鼠體內(nèi)找出區(qū)分PMC神經(jīng)元和它們周圍的脊髓運(yùn)動(dòng)神經(jīng)元,,論文第一作者Polyxeni Philippidou博士將一種逆行的熒光示蹤劑注射進(jìn)膈神經(jīng)(phrenic nerve)中,,其中膈神經(jīng)將PMC和隔膜連接在一起。他接著尋找當(dāng)示蹤劑返回PMC中時(shí)發(fā)生熒光的脊髓神經(jīng)元,。他使用在運(yùn)動(dòng)神經(jīng)元及其軸突中表達(dá)綠色熒光蛋白(green fluorescent protein, GFP)的轉(zhuǎn)基因小鼠來(lái)觀察膈神經(jīng),。在注意到這些PMC神經(jīng)元的特征性基因表達(dá)模式后,Philippidou博士開(kāi)始確定它們的特異性作用,。最終,,他利用一種復(fù)雜的轉(zhuǎn)基因小鼠品種揭示出兩個(gè)基因Hoxa5和Hoxc5是PMC正確發(fā)育的主要控制者。
當(dāng)在小鼠胚胎運(yùn)動(dòng)神經(jīng)元中沉默基因Hoxa5和Hoxc5時(shí),,研究人員發(fā)現(xiàn)PMC不能形成正常的緊密柱狀結(jié)構(gòu),,而且也不能與隔膜正確地連接在一起,從而使得新生的動(dòng)物不能呼吸,。Dasen博士說(shuō),,“即便在胎兒發(fā)育后期剔除這些基因,PMC神經(jīng)元群體下降,,而且膈神經(jīng)在隔膜肌上不能形成足夠的分支,。”
Dasen博士計(jì)劃利用這些發(fā)現(xiàn)來(lái)協(xié)助理解更為廣泛的呼吸回路,包括腦干中產(chǎn)生節(jié)律的神經(jīng)元,,其中這些神經(jīng)元對(duì)二氧化碳水平,、壓力和其他環(huán)境因子作出反應(yīng)。
doi: 10.1038/nn.3242
PMC:
PMID:
Sustained Hox5 gene activity is required for respiratory motor neuron development
Polyxeni Philippidou,1 Carolyn M Walsh,1 Josée Aubin,2 Lucie Jeannotte2 & Jeremy S Dasen
Respiration in mammals relies on the rhythmic firing of neurons in the phrenic motor column (PMC), a motor neuron group that provides the sole source of diaphragm innervation. Despite their essential role in breathing, the specific determinants of PMC identity and patterns of connectivity are largely unknown. We show that two Hox genes, Hoxa5 and Hoxc5, control diverse aspects of PMC development including their clustering, intramuscular branching, and survival. In mice lacking Hox5 genes in motor neurons, axons extend to the diaphragm, but fail to arborize, leading to respiratory failure. Genetic rescue of cell death fails to restore columnar organization and branching patterns, indicating these defects are independent of neuronal loss. Unexpectedly, late Hox5 removal preserves columnar organization but depletes PMC number and branches, demonstrating a continuous requirement for Hox function in motor neurons. These findings indicate that Hox5 genes orchestrate PMC development through deployment of temporally distinct wiring programs.