7月1日,,國際學術(shù)期刊《美國科學院院刊》在線發(fā)表了中國科學院上海生命科學研究院神經(jīng)科學研究所郭愛克研究組關(guān)于嗅覺感知過程中腦特定功能區(qū)域神經(jīng)網(wǎng)絡(luò)聯(lián)結(jié)研究的重要成果,,該研究成果揭示了腦特定功能區(qū)域內(nèi)神經(jīng)元微環(huán)路和產(chǎn)生氣味選擇性的信息轉(zhuǎn)換機制。
人類大腦約有一千億個神經(jīng)細胞,,形成具有1015聯(lián)結(jié)數(shù)的復(fù)雜神經(jīng)互聯(lián)網(wǎng)絡(luò),這一復(fù)雜網(wǎng)絡(luò)是人類智力產(chǎn)生的基礎(chǔ),。因此,,腦功能神經(jīng)網(wǎng)絡(luò)聯(lián)結(jié)圖譜被視為人類的“智力藍圖”,是腦科學研究面臨的重大挑戰(zhàn),,在研究中存在兩大瓶頸問題,,一是為了能記錄活體狀態(tài)下所有神經(jīng)細胞的電活動,必需研發(fā)出能反映電活動的非侵入性微探針,,在記錄大量神經(jīng)細胞電活動的同時,,又有足夠的時間和空間分辨率;二是目前還不能支持這樣海量數(shù)據(jù)的解讀,,難以從中提取有關(guān)大腦工作的原理和規(guī)律信息,。
郭愛克院士領(lǐng)導(dǎo)的研究小組獨辟蹊徑,發(fā)展了一種新型神經(jīng)細胞雙色鈣成像技術(shù)(dual color calcium imaging),,用于研究神經(jīng)元之間,、突觸前與突觸后之間在結(jié)構(gòu)聯(lián)結(jié)和功能上的相互關(guān)系,并利用該項技術(shù)揭示了果蠅嗅覺感知過程中氣味選擇性的編碼機制,以及從嗅球的投射神經(jīng)元到被投射的單個蘑菇體神經(jīng)元微環(huán)路的信息轉(zhuǎn)換機制,。
當前,,繪制人類“智力藍圖”已成為國際生命科學研究和未來發(fā)展的制高點。2013年2月,,美國總統(tǒng)奧巴馬在國會的國情報告中提出了“腦活動圖譜計劃”(BrainActivityMap),,該計劃的目標是做出活體狀態(tài)下大腦內(nèi)“每一個神經(jīng)細胞上的每一個電脈沖”的圖譜。中國科學院經(jīng)過多年的研討醞釀,、組織隊伍,、凝煉目標,已于2012年11月率先實施啟動了“腦功能聯(lián)結(jié)圖譜”戰(zhàn)略性先導(dǎo)科技專項(B),。該項目與美國“腦活動圖譜計劃”的主要區(qū)別在于,,是有所選擇地描述各腦區(qū)特殊種類神經(jīng)細胞群之間有功能的聯(lián)結(jié)和運作,并根據(jù)腦科學發(fā)展態(tài)勢和最新技術(shù)條件,,選擇幾種重要的腦功能(感覺,、情緒、學習記憶,、決策),,力求完整地描述在正常生理狀態(tài)和病理狀態(tài)下,這些承擔重要功能的神經(jīng)網(wǎng)絡(luò)聯(lián)結(jié)的構(gòu)造和運作機制,。
郭愛克研究組提出的新型神經(jīng)細胞雙色鈣成像技術(shù)將可廣泛應(yīng)用于多種神經(jīng)聯(lián)結(jié)網(wǎng)絡(luò),,以獲取執(zhí)行特定腦功能相關(guān)腦結(jié)構(gòu)所有神經(jīng)細胞電活動的動態(tài)信息,為最終完成繪制人類“智力藍圖”夢想做出貢獻,。(生物谷 Bioon.com)
生物谷推薦的英文摘要
PNAS doi: 10.1073/pnas.1305857110
Hao Li, Yiming Li, Zhengchang Lei, Kaiyu Wang, and Aike Guo
Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging
Although the response properties of most neurons are, to a large extent, determined by the presynaptic inputs that they receive, comprehensive functional characterization of the presynaptic inputs of a single neuron remains elusive. Toward this goal, we introduce a dual-color calcium imaging approach that simultaneously monitors the responses of a single postsynaptic neuron together with its presynaptic axon terminal inputs in vivo. As a model system, we applied the strategy to the feed-forward connections from the projection neurons (PNs) to the Kenyon cells (KCs) in the mushroom body of Drosophila and functionally mapped essentially all PN inputs for some of the KCs. We found that the output of single KCs could be well predicted by a linear summation of the PN input signals, indicating that excitatory PN inputs play the major role in generating odor-selective responses in KCs. When odors failed to activate KC output, local calcium transients restricted to individual postsynaptic sites could be observed in the KC dendrites. The response amplitudes of the local transients often correlated linearly with the presynaptic response amplitudes, allowing direct assay of the strength of single synaptic sites. Furthermore, we found a scaling relationship between the total number of PN terminals that a single KC received and the average synaptic strength of these PN-KC synapses. Our strategy provides a unique perspective on the process of information transmission and integration in a model neural circuit and may be broadly applicable for the study of the origin of neuronal response properties.