北極永久凍土中封存的碳估計(jì)有16720億公噸,,超過2009年美國溫室氣體排放量的250倍。然而,,永久凍土帶消融會否導(dǎo)致這些被困無數(shù)個(gè)世代的碳逸出,,給碳循環(huán)帶來潛在影響?隨著全球氣溫緩慢上升,,這樣的憂慮也在升溫,。在這種情況下,包含在凍土層中的微生物成為了關(guān)注的焦點(diǎn),。它們最終起到了釋放碳還是保存碳,,抑或介于兩者之間的限制碳釋放的作用,這成為了科學(xué)家們研究的課題,。
所謂永久凍土,,在地質(zhì)學(xué)上指的是溫度在水的冰點(diǎn)(0攝氏度)或低于冰點(diǎn)且持續(xù)達(dá)兩年或兩年以上的土壤。大部分永久凍土帶位于高緯度地區(qū)(即靠近南北兩極的地帶),,但在低緯度的高海拔地區(qū)也可能存在高山凍土帶,。在北半球,有24%的裸露陸地為永久凍土帶,,其中的含水量占北半球總體水量的0.022%,。永久凍土帶的范圍隨氣候的變化而發(fā)生改變。目前,,北極有相當(dāng)大的一部分面積都被永久凍土帶(包括不連續(xù)多年凍土)所覆蓋,。上覆層凍土是一個(gè)薄的活性層,在夏季到來時(shí)會出現(xiàn)季節(jié)性解凍,。
美國環(huán)保局的數(shù)據(jù)顯示,,2009年美國的二氧化碳排放中,化石燃料燃燒釋放的二氧化碳為52億公噸,,相比被封存在北極永久凍土帶中的二氧化碳而言,,這只是很小的一部分,約為其千分之三,??茖W(xué)家開展了多項(xiàng)研究,,試圖了解凍土中的微生物過程以及微生物活動對二氧化碳過程的影響。
據(jù)環(huán)境新聞服務(wù)網(wǎng)報(bào)道,,11月6日發(fā)表在《自然》雜志網(wǎng)絡(luò)版上的一項(xiàng)新研究公布了一種新型微生物的基因組草圖,,該微生物能夠產(chǎn)生甲烷――一種比二氧化碳更強(qiáng)大的溫室氣體。這種尚未命名的微生物生活在永久凍土帶中,,無法在實(shí)驗(yàn)室中生長,,是科學(xué)家利用從寒冷的土壤中分離出的基因組集合(宏基因組)“組裝”而成的。組裝過程遭遇的挑戰(zhàn)類似于在大堆龐雜的拼圖塊中進(jìn)行甄選,,并最終完成一個(gè)完整的拼圖,。
“由于北極地區(qū)的升溫幅度預(yù)計(jì)將比世界很多其他地區(qū)更為顯著,永久凍土帶或?qū)⒊蔀闇厥覛怏w的一個(gè)主要來源,。”該研究的發(fā)起人和論文作者,、勞倫斯伯克利實(shí)驗(yàn)室地球科學(xué)部的珍妮特·揚(yáng)森(Janet Jansson)說,“通過將宏基因組學(xué)應(yīng)用于研究微生物群落的組成和功能,,我們可以幫助回答一些相關(guān)問題,,比如那些目前居住在永久凍土帶中的、未經(jīng)培養(yǎng)和研究過的微生物物種如何循環(huán)有機(jī)碳,,以及它們在解凍過程中如何釋放溫室氣體,。這將為改進(jìn)碳循環(huán)模型和最終的減災(zāi)戰(zhàn)略提供有價(jià)值的信息。”(生物谷 Bioon.com)
doi:10.1038/nature10576
PMC:
PMID:
Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
Rachel Mackelprang,Mark P. Waldrop, Kristen M. DeAngelis, Maude M. David, Krystle L. Chavarria, Steven J. Blazewicz,Edward M. Rubin& Janet K. Jansson
Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 °C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.