1月6日,國(guó)際著名雜志PloS One在線刊登了浙江大學(xué)李永泉教授的最新研究成果“A Mutation in Intracellular Loop 4 Affects the Drug-Efflux Activity of the Yeast Multidrug Resistance ABC Transporter Pdr5p,,”文章中,研究人員揭示了酵母多重耐藥性新的分子機(jī)制,。
李永泉教授是浙江大學(xué)生物化學(xué)研究所所長(zhǎng),研究方向主要是微生物次級(jí)代謝和微生物制藥,,近年來(lái)主持和主要參與了國(guó)家重大新藥創(chuàng)制重大專項(xiàng),、國(guó)家973計(jì)劃等,主持與參與了有機(jī)酸L-酒石酸,、抗生素納他霉素與達(dá)托霉素,、免疫抑制劑他克莫司的研究開(kāi)發(fā),取得了多項(xiàng)產(chǎn)學(xué)研合作成果,;相繼在國(guó)際眾多著名雜志Applied and Environmental Microbiology,、Journal of Bacteriology、FEBS Letters,、Plos one上發(fā)表了數(shù)篇SCI文章,。
ABC-transpoters是可以轉(zhuǎn)運(yùn)多種物質(zhì)的膜蛋白,通過(guò)ABC-transpoters介導(dǎo)的外排外源性物質(zhì)成為微生物耐藥性的一種主要機(jī)制,,在釀酒酵母中有大量的ABC-transpoters,,Pdr5p就是其中一種,它通過(guò)轉(zhuǎn)運(yùn)的方式外排藥物,,主要來(lái)為細(xì)胞解毒,;拓?fù)鋵W(xué)預(yù)測(cè)Pdr5p攜帶著兩個(gè)高度防水的跨膜結(jié)構(gòu)域(NBDs)和兩個(gè)核酸結(jié)合位點(diǎn)(TMDs),;Pdr5p如何識(shí)別并且運(yùn)輸物質(zhì)的機(jī)制目前尚不清楚,。以前的研究表明,對(duì)Pdr5p的NBDs或者TMDs進(jìn)行定點(diǎn)突變,,可以使得某些單核苷酸凸顯其功能,,這些研究重點(diǎn)在于揭示ATP水解作用或者結(jié)合作用,以及通過(guò)膜轉(zhuǎn)運(yùn)物質(zhì)等的機(jī)理,。
作者先前的工作表明,,病原菌株YJM789中的Pdr5p因?yàn)樽陨淼男蛄汹叜惗鴮?dǎo)致功能部分缺失,進(jìn)一步研究發(fā)現(xiàn),,TMD2片段中的序列趨異可以導(dǎo)致病原菌株YJM789對(duì)氟康唑和放線菌酮敏感,,YJM789含有部分預(yù)測(cè)的C-末端的NBD和編碼PDR5蛋白的C-末端TMD編碼序列。
文章中,,作者發(fā)現(xiàn)臨床上的一株菌YJM789中的Pdr5p喪失了外排吡咯和放線菌酮的能力,,為了研究氨基酸的改變對(duì)整體蛋白功能的影響,作者進(jìn)行了一系列研究,最終發(fā)現(xiàn)TMD2片段YPDR5的突變可以影響多藥耐藥性蛋白Pdr5p的功能,,研究結(jié)果揭示細(xì)胞內(nèi)4環(huán)的A1352位點(diǎn)的突變可以導(dǎo)致外排泵外拍能力的明顯下降,。(生物谷Bioon.com)
(T.Shen編譯 如有問(wèn)題請(qǐng)及時(shí)指正)
doi:10.1371/journal.pone.0029520
PMC:
PMID:
A Mutation in Intracellular Loop 4 Affects the Drug-Efflux Activity of the Yeast Multidrug Resistance ABC Transporter Pdr5p
Xiaoxian Guo1, Jingkai Li1, Tanjun Wang1, Zhenhua Liu1, Xin Chen1, Yudong Li3, Zhenglong Gu2, Xuming Mao1, Wenjun Guan1*, Yongquan Li1*
Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constructed by segmental replacement of homologous BY4741 PDR5 fragments. Functions of PDR5 chimeras were evaluated by fluconazole and cycloheximide resistance assays. Their expression, ATPase activity, and efflux efficiency for other substrates were also analyzed. Using multiple lines of evidence, we show that an alanine-to-methionine mutation at position 1352 located in the predicted short intracellular loop 4 significantly contributes to the observed transport deficiency. The degree of impairment is likely correlated to the size of the mutant residue.