近日,國(guó)際著名雜志《美國(guó)國(guó)家科學(xué)院院刊》(PNAS)在線刊登了美國(guó)研究人員的最新研究成果“Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease,,”文章中,作者利用新的方法來(lái)研究人類微生物群落的組織架構(gòu)以及對(duì)人類健康的影響,。
人類身體中藏匿著超過(guò)數(shù)以百億的微生物菌群,,這種龐大復(fù)雜的微生物菌群系統(tǒng)對(duì)于人類發(fā)展、免疫,、營(yíng)養(yǎng),、以及我們的身體健康有著重要的作用,,人體中,微生物群落繁殖最為密集的地方就是人的腸末梢,,正常情況下,,腸區(qū)系包含了成百上千的微生物種類,所編碼的巨大的基因是人類的150倍以上,;腸微生物群落在很多必要的過(guò)程中扮演了重要的角色,,包括維他命和氨基酸的生物合成,食物能量的采集,,免疫系統(tǒng)的發(fā)展,,人類微生物菌群的特點(diǎn)以及與宿主的關(guān)系使得我們?cè)谥委熑祟惿砑膊∩蠈?duì)微生物菌群有著更深入的研究視角;目前,,世界的研究者們將目光轉(zhuǎn)移到了研究人類微生物菌群系統(tǒng)上來(lái),,他們開(kāi)始繪制人類的微生物圖譜,為以前未知的種群和基因提供新的視野,,尤其是16S核糖體RNA序列分析為研究者們提供了很好的平臺(tái),,供研究者決定微生物群落中不同分類群的相對(duì)豐度,相關(guān)的調(diào)查研究也已經(jīng)揭示了,,比如說(shuō)腸微生物群落不同種群混合物的標(biāo)記以及一系列的宿主表型,;DNA變位基因組鳥(niǎo)槍法和基因中樞比較方法可以在微生物代謝中捕獲功能性的差異,然而,,腸微生物群落系統(tǒng)的比較變位基因組分析的方法只能揭示樣品高功能的均一性,,而且只能識(shí)別特定宿主僅僅一小部分的基因或者途徑。
文章中,,作者引入了一種特殊的框架來(lái)研究人類的微生物群落,,作者運(yùn)用系統(tǒng)水平分析的網(wǎng)絡(luò)框架來(lái)整合變位基因組數(shù)據(jù),這種變位基因組系統(tǒng)生物學(xué)的研究方法優(yōu)于傳統(tǒng)的比較分析方法,,是將鳥(niǎo)槍變位數(shù)據(jù)放在群落代謝網(wǎng)絡(luò)的計(jì)算機(jī)上下文中,,文章中,作者將不同變位基因組的樣品網(wǎng)絡(luò)中酶類的拓?fù)鋵W(xué)性質(zhì)與豐度進(jìn)行比較,,并且檢測(cè)了不同宿主群體微生物群落的拓?fù)鋵W(xué)特點(diǎn),,這有助于我們了解代謝能力的變化特點(diǎn),這種方法,,作者將微生物群落視為單一的獨(dú)立生物學(xué)系統(tǒng),,通過(guò)引入微生物群落存在的基因和這些基因之間的網(wǎng)絡(luò)關(guān)系,通過(guò)進(jìn)行計(jì)算來(lái)延伸變位基因組的基因中央的視野,。
研究者Sharon Greenblum在文章中指出,,他們運(yùn)用了一個(gè)變位基因組系統(tǒng)生物學(xué)的計(jì)算框架,將數(shù)據(jù)與硅系統(tǒng)分析的代謝網(wǎng)絡(luò)進(jìn)行整合,,通過(guò)研究腸微生物群落,,作者分析了124個(gè)單獨(dú)個(gè)體的糞便間位基因組學(xué)數(shù)據(jù),,得出了微生物群落等級(jí)代謝的的網(wǎng)絡(luò)圖譜,通過(guò)分析,,作者識(shí)別出了和肥胖以及腸炎疾病相關(guān)的基因等級(jí)和網(wǎng)絡(luò)等級(jí)之間的拓?fù)鋵W(xué)差別,,作者發(fā)現(xiàn)這些基因傾向于定位在代謝網(wǎng)絡(luò)的邊緣,作者的研究發(fā)現(xiàn)揭示了肥胖人群和瘦人之間的微生物群落差異表現(xiàn)在微生物和宿主之間的接觸和相互關(guān)系,,作者進(jìn)一步揭示,,肥胖人群的微生物群落或許是比較少的一些模塊,但是卻是適應(yīng)低多樣性環(huán)境的一個(gè)標(biāo)志,,研究者隨后又鏈接了群落等級(jí)組成成分的拓?fù)鋵W(xué)變更,,文章中作者闡述的系統(tǒng)等級(jí)的方法為我們研究人類微生物群落,組織以及對(duì)人類健康的影響提供了唯一特殊的框架體系,。(生物谷:T.Shen編譯)
doi:10.1073/pnas.1116053109
PMC:
PMID:
Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease
Sharon Greenbluma, Peter J. Turnbaughb, and Elhanan Borensteina,c,d,1
The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic “inputs.” These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.