據(jù)美國(guó)物理學(xué)家組織網(wǎng)3月20日(北京時(shí)間)報(bào)道,,英國(guó)科學(xué)家研制出一種新的生物“電線”,,可以將酵母菌的DNA有效地連接在一起,最新方法有助于科學(xué)家制造出更復(fù)雜的微型生物機(jī)器,。研究論文發(fā)表在3月19日出版的《公共科學(xué)圖書館—綜合》PLoS One雜志上,。
帝國(guó)理工學(xué)院合成生物學(xué)和創(chuàng)新中心的科學(xué)家展示了這種制造生物“電線”的新方式。他們修改了一個(gè)基于蛋白質(zhì)的名為轉(zhuǎn)錄激活因子樣效應(yīng)物(TAL Effectors)的技術(shù),,讓該效應(yīng)物制造出一種行為特征類似于電子設(shè)備中電線的轉(zhuǎn)錄激活因子蛋白,。研究人員表示,新生物“電線”的優(yōu)勢(shì)在于,,其能夠被重復(fù)編程,,這意味著它們能將很多基于DNA的元件連接在一起而不會(huì)導(dǎo)致設(shè)備“短路”,,因此,有潛力讓DNA組件之間連接數(shù)十億次,??茖W(xué)家們此前研制出的這類“電線”所連接DNA數(shù)量有限,因此,,不能用來(lái)組成復(fù)雜的生物機(jī)器,。
該研究團(tuán)隊(duì)還研發(fā)出很多名為“啟動(dòng)子”的基礎(chǔ)DNA元件,利用這些“啟動(dòng)子”,,可對(duì)酵母菌進(jìn)行重新編程以使其執(zhí)行不同任務(wù),。
該研究的合作者湯姆·伊萊斯表示:“最新進(jìn)展為以酵母菌為研究對(duì)象的生物工程師提供了一個(gè)有價(jià)值的新式工具箱。從葡萄栽培技術(shù)到制造面包,,幾千年來(lái),,人類一直使用酵母菌來(lái)讓社會(huì)變得更加富足。我們的最新研究將促進(jìn)使用酵母菌制造出更復(fù)雜生物機(jī)器這一領(lǐng)域的大力發(fā)展,。這些迷你型生物機(jī)器可用于環(huán)境監(jiān)測(cè),、清潔燃料的制造等,會(huì)讓我們的生活變得更美好,。”
該論文的第一作者,、帝國(guó)理工大學(xué)合成生物和創(chuàng)新中心的本杰明·博能特說(shuō):“我們讓酵母菌重新通電的新方法為研制出更復(fù)雜的生物設(shè)備打開(kāi)了大門,未來(lái),,我們也可借此對(duì)細(xì)胞編程讓其完成由計(jì)算機(jī)執(zhí)行的任務(wù),。”
該合成生物學(xué)和創(chuàng)新研究中心的聯(lián)合主任理查德·凱特尼補(bǔ)充道:“新研究真正讓我們朝用酵母菌研發(fā)出更多復(fù)雜的生物機(jī)器邁進(jìn)了一大步,這將帶領(lǐng)我們進(jìn)入一個(gè)新時(shí)代,,在這個(gè)時(shí)代,,生物機(jī)器能改進(jìn)我們的健康狀態(tài)、改善我們生活和休閑方式,。”
該中心的另一位聯(lián)合主任保羅·弗里蒙特得出結(jié)論說(shuō):“這種用酵母菌組裝特定生物零件的新方法將很快為學(xué)術(shù)界和工業(yè)界所運(yùn)用,。”(生物谷Bioon.com)
doi:10.1371/journal.pone.0033279
PMC:
PMID:
Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology
Benjamin A. Blount1,2, Tim Weenink1, Serge Vasylechko2, Tom Ellis1,2*
Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions.