據(jù)物理學(xué)家組織網(wǎng)5月15日報(bào)道,,美國聯(lián)合生物能源研究所(JBEI)通過新的實(shí)驗(yàn)方法和基因測序分析,發(fā)現(xiàn)了細(xì)菌耐受有毒鹽溶液的生理機(jī)制,,有望大大提高微生物抵抗生物燃料生產(chǎn)過程中所使用的鹽溶液毒性的能力。研究人員指出,,該研究可作為耐離子液微生物基因工程的基礎(chǔ),,帶來更高效的生物燃料生產(chǎn)工藝。相關(guān)論文發(fā)表在5月14日的《美國國家科學(xué)院學(xué)報(bào)》網(wǎng)站上。
用植物纖維素制造生物燃料要經(jīng)過復(fù)雜的工序和化學(xué)預(yù)處理,,讓木質(zhì)纖維素更容易被微生物消化,,這些微生物含有特殊的酶。但用于化學(xué)預(yù)處理的鹽溶液對這些微生物來說卻是“有毒”的,。
“找到能耐受鹽溶液的微生物并理解它們的耐鹽機(jī)制,,有助于大大提高生物燃料的產(chǎn)量。”領(lǐng)導(dǎo)該研究的勞倫斯·利弗莫爾國家實(shí)驗(yàn)室的邁克爾·希倫說,,“比如森林腐殖土中的微生物,,能產(chǎn)生高效的酶分解木質(zhì)纖維,適應(yīng)環(huán)境變化壓力,。利用這些有益特性,,通過基因工程改造現(xiàn)有的實(shí)驗(yàn)室菌種,能讓它們在生產(chǎn)生物燃料的過程中對有毒鹽溶液的耐受性更強(qiáng),,生產(chǎn)效率更高,。”
研究人員分離了一種在熱帶雨林土壤中發(fā)現(xiàn)的腸桿菌屬細(xì)菌(SCF1),它們能分解植物木質(zhì)纖維,,并且在相對高濃度的鹽溶液中長勢良好,,這些鹽溶液對其他菌種來說是高毒性的。
他們對SCF1的基因組進(jìn)行了測序,,發(fā)現(xiàn)了多種代謝反應(yīng),,并將這些反應(yīng)繪成圖譜。還用高通量生長化驗(yàn)和細(xì)胞膜成分分析方法,,研究了SCF1耐受高濃度鹽溶液的機(jī)制,,并測定了它的所有變異基因。結(jié)果發(fā)現(xiàn),,該細(xì)菌能抵抗鹽溶液毒性是因?yàn)樗鼈兡苷{(diào)節(jié)細(xì)胞膜的成分,,降低細(xì)胞滲透性,并增加一種蛋白質(zhì)的運(yùn)送,,在有毒物質(zhì)傷害細(xì)胞之前,,將毒物“泵”出細(xì)胞外。
利用生物質(zhì)生產(chǎn)液態(tài)生物燃料可減少人們對化石燃料的依賴,,減少溫室氣體排放,,是一種很有前景的技術(shù)。希倫說:“尋找并分析和SCF1有類似性質(zhì)的微生物,,將為生物燃料工業(yè)帶來極大利益,。我們的發(fā)現(xiàn)可作為耐離子液微生物基因工程的基礎(chǔ),帶來更高效的生物燃料生產(chǎn)工藝,。”(生物谷:Bioon.com)
doi:10.1073/pnas.1112750109
PMC:
PMID:
Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus
Jane I. Khudyakova,b, Patrik D’haeseleera,c, Sharon E. Borglind, Kristen M. DeAngelisa,d, Hannah Wooa,d, Erika A. Lindquiste, Terry C. Hazena,d, Blake A. Simmonsa,f, and Michael P. Thelen
To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance.