貝塔細(xì)胞正常分泌胰島素是治療糖尿病的關(guān)鍵,。如果能將大量完全分化的成年細(xì)胞以受控方式轉(zhuǎn)變成能分泌胰島素的貝塔細(xì)胞的話,,糖尿病治療的前景將會(huì)改變。雖然以前文獻(xiàn)中有幾個(gè)以這種方式生成貝塔細(xì)胞的例子,,但這個(gè)過(guò)程迄今為止是無(wú)法控制的,。
美國(guó)科研人員最新研究發(fā)現(xiàn),患糖尿病的活小鼠的外分泌胰腺細(xì)胞可被重新編程(生物谷注:重編程即細(xì)胞的再程序化,使分化后的細(xì)胞重新分化的技術(shù)),,成為能夠產(chǎn)生胰島素的內(nèi)分泌細(xì)胞,,與貝塔細(xì)胞相似,從一種分化狀態(tài)進(jìn)入另一種分化狀態(tài),,中間并不需轉(zhuǎn)變成干細(xì)胞,。這種策略是基于早先關(guān)于胰腺發(fā)育中所涉及轉(zhuǎn)錄因子的研究成果:三種因子(Ngn3, Pdx1 和 Mafa)的組合是該過(guò)程中的關(guān)鍵成分。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature 455, 627-632 (2 October 2008) | doi:10.1038/nature07314
In vivo reprogramming of adult pancreatic exocrine cells to β-cells
Qiao Zhou1, Juliana Brown2, Andrew Kanarek1, Jayaraj Rajagopal1 & Douglas A. Melton1
1 Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
2 Department of Pathology, Children's Hospital, Boston, Harvard Medical School, Harvard Stem Cell Institute, 300 Longwood Avenue, Boston, Massachusetts 02115-5724, USA
One goal of regenerative medicine is to instructively convert adult cells into other cell types for tissue repair and regeneration. Although isolated examples of adult cell reprogramming are known, there is no general understanding of how to turn one cell type into another in a controlled manner. Here, using a strategy of re-expressing key developmental regulators in vivo, we identify a specific combination of three transcription factors (Ngn3 (also known as Neurog3) Pdx1 and Mafa) that reprograms differentiated pancreatic exocrine cells in adult mice into cells that closely resemble -cells. The induced -cells are indistinguishable from endogenous islet -cells in size, shape and ultrastructure. They express genes essential for -cell function and can ameliorate hyperglycaemia by remodelling local vasculature and secreting insulin. This study provides an example of cellular reprogramming using defined factors in an adult organ and suggests a general paradigm for directing cell reprogramming without reversion to a pluripotent stem cell state.