美國科學(xué)家使用一個患有脊髓性肌萎縮癥(SMA)兒童的皮膚細胞,,制造了誘導(dǎo)多能干細胞(iPS細胞),利用這些iPS細胞培育出包含導(dǎo)致SMA疾病遺傳缺陷的運動神經(jīng)細胞,,以觀察該疾病怎樣發(fā)展,,并試圖找到治療該疾病的方法。發(fā)表在12月21日《自然》雜志上的該項研究,,朝著利用iPS細胞來治療疾病的目標(biāo)又邁出了重要的一步,。
美國威斯康辛大學(xué)麥迪遜分校的克萊夫·斯文德森團隊使用一個患有SMA的兒童的皮膚細胞制造了iPS細胞,iPS在能夠發(fā)育為任何器官或組織的能力上與胚胎干細胞類似,。然后,,研究人員誘導(dǎo)這些細胞變成運動神經(jīng)細胞,因為身體內(nèi)的每個細胞包含同樣的遺傳指令,,使用這個兒童的皮膚細胞制造的運動神經(jīng)細胞也攜帶該遺傳疾病,。同時,研究團隊也使用該兒童健康母親的細胞制造了運動神經(jīng)細胞,。
利用該兒童皮膚制造的運動神經(jīng)細胞在2個月后開始死亡,,而利用其母親細胞制造的神經(jīng)細胞則正常生長。由于iPS細胞能在實驗室里生長幾個月甚至幾年,,因此該實驗可多次重復(fù)進行,。斯文德森將其比作汽車事故的視頻,可以反復(fù)播放,并找到原因,。斯文德森說,,該發(fā)現(xiàn)可使制藥者對潛在的治療方案進行測試以預(yù)防SMA中的神經(jīng)死亡。
斯文德森實驗室并非使用iPS細胞作為研究疾病新型工具的第一家,。今年7月底,,哈佛干細胞研究所的凱文·埃根使用患有肌萎縮性側(cè)索硬化癥的病人的皮膚細胞制造了iPS細胞,這是第一次將來自慢性病患者的皮膚細胞重組為iPS細胞,,然后再誘變成理解和治療疾病所需的特殊細胞類型,。
SMA是一種遺傳疾病,它會攻擊脊髓中的運動神經(jīng)細胞,,人體內(nèi)缺乏SMN蛋白(SMN蛋白是運動神經(jīng)元生存蛋白,,能夠使肌肉活動)時會引發(fā)該疾病?;加性摷膊〉膵雰撼錾?個月后,,該疾病就會慢慢發(fā)展,接著肌肉出現(xiàn)萎縮,,無法控制運動,,直至完全癱瘓,2歲左右就會死亡,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature,,doi:10.1038/nature07677,Allison D. Ebert,,Clive N. Svendsen
Induced pluripotent stem cells from a spinal muscular atrophy patient
Allison D. Ebert1,2, Junying Yu3, Ferrill F. Rose, Jr4, Virginia B. Mattis4, Christian L. Lorson4, James A. Thomson2,3,5 & Clive N. Svendsen1,2,5,6
1 The Waisman Center, and,
2 The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
3 The Genome Center and Wisconsin National Primate Research Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, Wisconsin 53706, USA
4 Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, Missouri 65211, USA
5 Department of Anatomy, University of Wisconsin-Madison, 1300 University Avenue Madison, Wisconsin 53706, USA
6 Department of Neurology, University of Wisconsin-Madison, 600 North Highland Avenue, Madison, Wisconsin 53792, USA
Spinal muscular atrophy is one of the most common inherited forms of neurological disease leading to infant mortality. Patients have selective loss of lower motor neurons resulting in muscle weakness, paralysis and often death. Although patient fibroblasts have been used extensively to study spinal muscular atrophy, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem cells from skin fibroblast samples taken from a child with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the child's unaffected mother. This is the first study to show that human induced pluripotent stem cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies.