美國加州大學(xué)洛杉磯分校科學(xué)家在干細(xì)胞研究領(lǐng)域獲得新突破,,首次將人工多能干細(xì)胞誘導(dǎo)分化成電活躍運(yùn)動神經(jīng)細(xì)胞(electricallyactivemotorneurons),,這將有望助于人體神經(jīng)系統(tǒng)疾病的治療研究,。
科學(xué)家還發(fā)現(xiàn),從多能干細(xì)胞分化而來的運(yùn)動神經(jīng)細(xì)胞與人體胚胎干細(xì)胞分化而來的運(yùn)動神經(jīng)細(xì)胞,,在功能和效率上看上去十分相似,,但這點(diǎn)還需通過研究加以確認(rèn)。如果它們之間的相似性最終得以認(rèn)定,,該新成果將為利用病人特定細(xì)胞治療其神經(jīng)系統(tǒng)疾病開啟大門,。相關(guān)論文發(fā)表在《干細(xì)胞》(Stem Cells)雜志上。
加州大學(xué)洛杉磯分校分子,、細(xì)胞和發(fā)育生物學(xué)助理教授威廉·勞里是研究報(bào)告的主要作者,,他表示,,從現(xiàn)有的文獻(xiàn)看,有許多研究數(shù)據(jù)表明,,可以用人體多能干細(xì)胞獲得多種不同類型的未成熟的細(xì)胞,。然而,在從人體多能干細(xì)胞獲得全功能細(xì)胞方面的研究數(shù)據(jù)不多,。
神經(jīng)細(xì)胞(神經(jīng)元)是神經(jīng)系統(tǒng)的響應(yīng)細(xì)胞,,神經(jīng)系統(tǒng)通過電化學(xué)信號來處理和傳送信息。運(yùn)動神經(jīng)細(xì)胞能接收從大腦和骨髓神經(jīng)傳來的信號,,并控制肌肉的收縮,。勞里小組先把皮膚纖維原細(xì)胞重組為胚胎狀細(xì)胞,再利用其分化出運(yùn)動神經(jīng)細(xì)胞,。
在脊髓受損,、肌萎縮性脊髓側(cè)索硬化和脊骨肌萎縮等多種情況下,人體內(nèi)會出現(xiàn)運(yùn)動神經(jīng)細(xì)胞缺失現(xiàn)象,。該研究展示了利用多能干細(xì)胞分化的運(yùn)動神經(jīng)細(xì)胞和其祖細(xì)胞取代疾病患者受損或死亡運(yùn)動神經(jīng)細(xì)胞的可行性,,同時(shí)也為在實(shí)驗(yàn)室研究與神經(jīng)細(xì)胞相關(guān)的疾病以揭示疾病的根源提供了可能性。
研究指出,,人體胚胎干細(xì)胞和多能干細(xì)胞技術(shù)的重要目的是幫助人們獲得相應(yīng)的細(xì)胞,,用以修復(fù)受損組織。這項(xiàng)研究表明,,人們能從多種人體多能干細(xì)胞系獲得電活躍運(yùn)動神經(jīng)細(xì)胞,,同時(shí)證明這些神經(jīng)細(xì)胞在分子和生理方面與從人體胚胎干細(xì)胞分化而來的運(yùn)動神經(jīng)細(xì)胞難以區(qū)分。
勞里他們同時(shí)表示,,許多問題需要通過對多能干細(xì)胞分化的運(yùn)動神經(jīng)細(xì)胞進(jìn)行研究以及將其與病人的運(yùn)動神經(jīng)細(xì)胞進(jìn)行比較才能得到答案,。他們打算下一步把運(yùn)動神經(jīng)細(xì)胞與肌肉細(xì)胞進(jìn)行組合,以便了解神經(jīng)細(xì)胞能否產(chǎn)生刺激反應(yīng),。(生物谷Bioon.com)
生物谷推薦原始出處:
STEM CELLS 23 Feb 2009 DOI:10.1002/stem.31
Directed differentiation of human induced pluripotent stem cells generates active motor neurons
S Karumbayaram 1§, BG Novitch 2 3§?, M Patterson 5§, JA Umbach 4, L Richter 5, A Lindgren 5, AE Conway 5, AT Clark 3 5, SA Goldman 6, K Plath 3 7, M Wiedau-Pazos 1||, HI Kornblum 3 4 8, WE Lowry 3 5 *
1Department of Neurology, David Geffen School of Medicine at UCLA
2Department of Neurobiology, David Geffen School of Medicine at UCLA
3Broad Stem Cell Center, UCLA
4Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
5Department of Molecular, Cell and Developmental Biology, UCLA
6Center for Translational Neuromedicine, Dept. of Neurology, University of Rochester, Rochester, NY
7Department of Biological Chemistry, David Geffen School of Medicine at UCLA
8The Semel Institute and the Mental Retardation Research Center at UCLA
The potential for directed differentiation of human induced pluripotent stem (iPS) cells to functional post-mitotic neuronal phenotypes is unknown. Following methods shown to be effective at generating motor neurons from human embryonic stem cells (hESCs), we found that once specified to a neural lineage, human iPS cells could be differentiated to form motor neurons with a similar efficiency as hESCs. Human iPS-derived cells appeared to follow a normal developmental progression associated with motor neuron formation and possessed prototypical electrophysiological properties. This is the first demonstration that human iPS-derived cells are able to generate electrically active motor neurons. These findings demonstrate the feasibility of using iPS-derived motor neuron progenitors and motor neurons in regenerative medicine applications and in vitro modeling of motor neuron diseases.