英國科學(xué)家在實驗室里用干細(xì)胞培育出了內(nèi)耳毛細(xì)胞,,為耳聾患者恢復(fù)聽力帶來了希望,。
英國謝菲爾德大學(xué)的研究人員已經(jīng)通過人類干細(xì)胞培育出了聽力所必須的這種復(fù)雜的毛細(xì)胞和神經(jīng)細(xì)胞。他們發(fā)現(xiàn)能使用人類流產(chǎn)胎兒內(nèi)耳的干細(xì)胞培育出極其有用的毛細(xì)胞,??茖W(xué)家們希望,他們能使用這種細(xì)胞為耳聾患者進(jìn)行細(xì)胞移植,,取代神經(jīng)性耳聾患者已受損的毛細(xì)胞和神經(jīng)細(xì)胞,。神經(jīng)性耳聾是最常見的耳聾之一,占耳聾患者總數(shù)的90%,,患神經(jīng)性耳聾的患者超過600萬人,。
對神經(jīng)性耳聾患者來說,目前唯一方法是植入人工電子耳蝸,,但是,,這些電子裝置并不能恢復(fù)所有聽力,。負(fù)責(zé)這項研究的馬希洛·里維塔說:“賦予我們聽力的毛細(xì)胞和神經(jīng)細(xì)胞只在胚胎發(fā)育期生成,。一旦受損或者失去就無法再生。再生或者取代那些受損的毛細(xì)胞和神經(jīng)細(xì)胞的治療需要顯而易見,。”
研究人員從流產(chǎn)胎兒的耳蝸獲取干細(xì)胞,。對那些出生后不久就失去聽力——這就是我們的身體不能修復(fù)損傷的原因——的患者來說,這些干細(xì)胞擁有轉(zhuǎn)變?yōu)樗麄冎犉鞯哪芰?。里維塔和他的研究組發(fā)現(xiàn),,他們能在實驗室培育這些干細(xì)胞并把它們培育成毛細(xì)胞。
現(xiàn)在,,他們正在對動物進(jìn)行測試,,看移植這些細(xì)胞是否能恢復(fù)聽力。他還希望能通過其他干細(xì)胞來源如骨髓培育干細(xì)胞,。但是,,他警告說在人類患者能移植干細(xì)胞恢復(fù)聽力之前可能需要至少10年的時間,。他說:“在短期內(nèi),這些細(xì)胞還為我們提供了研究人類聽力的良好模式以及新療法對患者的可能效果,。”
毛細(xì)胞的作用是把聲音轉(zhuǎn)化為送給大腦的電子刺激,。在聲波經(jīng)過的時候,這些看起來從細(xì)胞表面長出的小毛會動起來,,這種運(yùn)動會把電子信號經(jīng)由神經(jīng)傳給大腦,。英國皇家國家失聰人士研究所生物醫(yī)學(xué)研究主任拉斐·霍爾默博士說:“目前還沒有恢復(fù)永久性聽力損失的療法,因此,,這種方法對數(shù)百萬失聰者來說有著潛在的重要性,。”(生物谷Bioon.com)
生物谷推薦原始出處:
STEM CELLS 23 Mar 2009
Human Fetal Auditory Stem Cells (hFASCs) Can Be Expanded In Vitro And Differentiate Into Functional Auditory Neurons And Hair Cell-Like Cells
Wei Chen 1 2, Stuart L. Johnson 2, Walter Marcotti 2, Peter W. Andrews 1 2, Harry D. Moore 1 2, Marcelo N. Rivolta 1 2 *§
1Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, United Kingdom
2Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
In the quest to develop the tools necessary for a cell-based therapy for deafness, a critical step is to identify a suitable stem cell population. Moreover, the lack of a self-renovating model system for the study of cell fate determination in the human cochlea has impaired our understanding of the molecular events involved in normal human auditory development. We describe here the identification and isolation of a population of SOX2+OCT4+ human auditory stem cells from 9-11 week-old fetal cochleae (hFASCs). These cells underwent long-term expansion in vitro and retained their capacity to differentiate into sensory hair cells and neurons, whose functional and electrophysiological properties closely resembled their in vivo counterparts during development. hFASCs, and the differentiating protocols defined here, could be used to study developing human cochlear neurons and hair cells, as models for drug screening and toxicity and may facilitate the development of cell-based therapies for deafness.