胚胎干細(xì)胞在用于細(xì)胞替代療法治療退行性疾病等研究,、以及作為發(fā)育和分化的研究模型中具有重要作用,。利用胚胎干細(xì)胞定向分化為特定類型細(xì)胞,應(yīng)用于再生醫(yī)學(xué)領(lǐng)域的理論研究與臨床應(yīng)用中,,非人靈長類動(dòng)物因其與人類系統(tǒng)發(fā)育上的親緣關(guān)系而成為非常有價(jià)值的動(dòng)物模型,。人類胚胎干細(xì)胞在再生醫(yī)學(xué)中的應(yīng)用,必須先通過在非人靈長類動(dòng)物模型上的驗(yàn)證后,,才能應(yīng)用于人類,。
在進(jìn)行恒河猴胚胎干細(xì)胞的神經(jīng)分化的研究中,為研究特定大腦分區(qū)神經(jīng)細(xì)胞及其開發(fā)利用,,尋找一個(gè)簡單有效的誘導(dǎo)神經(jīng)分化體系十分重要,。中國科學(xué)院動(dòng)物研究所周琪研究組的陳欣潔、李天晴等博士,,建立了單層培養(yǎng)誘導(dǎo)分化法,,并結(jié)合含有HGF+G5的化學(xué)限定培養(yǎng)基用于誘導(dǎo)恒河猴胚胎干細(xì)胞的神經(jīng)分化,證明了貼壁培養(yǎng)時(shí)含有HGF和G5的培養(yǎng)基更容易得到高度富集的可擴(kuò)大培養(yǎng)的神經(jīng)前體細(xì)胞,,這些神經(jīng)前體細(xì)胞表達(dá)不同的神經(jīng)系標(biāo)記,、脊髓標(biāo)記及眼部基因、中腦基因等,,表明此單層培養(yǎng)體系可作為誘導(dǎo)分化神經(jīng)亞型的模型,;并發(fā)現(xiàn)通過這種方式獲得的神經(jīng)前體細(xì)胞能分化成三種神經(jīng)細(xì)胞系,有進(jìn)一步分化成大腦特定部位細(xì)胞的潛能,,表明這一體系也能夠作為研究非人類靈長類動(dòng)物神經(jīng)元發(fā)生中細(xì)胞命運(yùn)特化機(jī)制的模型,。因此,優(yōu)化后的單層培養(yǎng)體系不僅為研究非人靈長類誘導(dǎo)分化神經(jīng)亞型及神經(jīng)元發(fā)生中細(xì)胞命運(yùn)特化機(jī)制提供了重要模型,,同時(shí)為研究帕金森病等人類神經(jīng)退行性疾病的發(fā)生機(jī)理及治療手段提供了重要模型,,為人類胚胎干細(xì)胞在再生醫(yī)學(xué)中的應(yīng)用提供了良好借鑒。(生物谷Bioon.com)
生物谷推薦原始出處:
Reprod Biomed Online. 2009 Sep;19(3):426-33.
Neural progenitors derived from monkey embryonic stem cells in a simple monoculture system
Chen X, Li T, Li X, Xie Y, Guo X, Ji S, Niu Y, Yu Y, Ding C, Yao R, Yang S, Ji W, Zhou Q.
State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
A simple monoculture system, combined with a chemically defined medium containing hepatocyte growth factor (HGF) and G5 supplement, was used to induce rhesus monkey embryonic stem cells (rESC) directly into neuroepithelial (NE) cells. Under these conditions, the generation of NE cells did not require the formation of embryoid bodies or co-culture with other cell types. The NE cells could further develop to generate neurons, astrocytes and oligodendrocytes. These results demonstrate a simple approach to obtain enriched and expandable populations of neural progenitors. Importantly, unlike other systems, the neural progenitors obtained using this approach may possess the potential to differentiate into various regional neural cells. Finally, the results suggest that the time-dependent shift in the differentiation potential of the rESC-derived neural progenitors in vitro reflects the developmental events that occur during neurogenesis in vivo. Thus, this system can be used to study the mechanisms of cell fate specification during non-human primate neurogenesis.