該突破性成果有望應用于提高納米電路和電力運輸系統(tǒng)等的能效
美國明尼蘇達大學研究人員最近拍攝到電子在細胞蛋白質(zhì)中移動的分子圖像,。研究人員稱,,這是生物學界一項突破性研究成果,將來有望應用于提高納米電路和電力運輸系統(tǒng)等的能效,。
這項研究由明尼蘇達大學生物科學學院副教授卡里·威爾莫特領導完成,研究成果刊登在新一期《科學》雜志上,。
電子在細胞內(nèi)移動產(chǎn)生的能量是生物體生存的基本能量來源之一,,由此產(chǎn)生的能量被人體用來生成蛋白質(zhì)、脫氧核糖核酸等復雜分子,。這些復雜分子是促進生物體生長、維持生命和儲存能量的基石,。威爾莫特等人利用X射線晶體技術獲得的圖像將加深對這一過程的理解,。
威爾莫特說,生物體在進化過程中利用電流的歷史久遠,,人類可以從大自然中學到更有效的電流利用方式,這可以用來研究更小的納米電路或開發(fā)出更有效的電力傳輸網(wǎng)絡,。
對這一研究提供資助的美國國家衛(wèi)生研究院科學家弗農(nóng)·安德森說,,獲得電子在復雜分子間移動的晶體結(jié)構好比通曉了魔術表演的奧秘,科學界早已知道生物體利用電流存在訣竅,,威爾莫特的團隊揭示了這一特殊化學過程是如何完成的。(生物谷Bioon.com)
生物谷推薦原文出處:
Science DOI: 10.1126/science.1182492
In Crystallo Posttranslational Modification Within a MauG/Pre–Methylamine Dehydrogenase Complex
Lyndal M. R. Jensen,1 Ruslan Sanishvili,2 Victor L. Davidson,3 Carrie M. Wilmot1,*
MauG is a diheme enzyme responsible for the posttranslational modification of two tryptophan residues to form the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase (MADH). MauG converts preMADH, containing monohydroxylated βTrp57, to fully functional MADH by catalyzing the insertion of a second oxygen atom into the indole ring and covalently linking βTrp57 to βTrp108. We have solved the x-ray crystal structure of MauG complexed with preMADH to 2.1 angstroms. The c-type heme irons and the nascent TTQ site are separated by long distances over which electron transfer must occur to achieve catalysis. In addition, one of the hemes has an atypical His-Tyr axial ligation. The crystalline protein complex is catalytically competent; upon addition of hydrogen peroxide, MauG-dependent TTQ synthesis occurs.
1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
2 General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT), Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
3 Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.