自從第一個真核細(xì)胞在距今大約40億年前從原核生物起源以來,原核生物幾乎沒有表現(xiàn)出要形成更大復(fù)雜性的傾向,。
相比之下,真核細(xì)胞構(gòu)成所有復(fù)雜多細(xì)胞生物的基礎(chǔ),。所有真核細(xì)胞要么有線粒體,,要么曾經(jīng)有但后來失去了,所以線粒體和真核細(xì)胞的起源也許是同一事件,。
為什么它如此有優(yōu)勢呢,?
Nick Lane 和William Martin提出,通過使氧化性磷酸化能在內(nèi)部膜的很多地方進行,,線粒體基因幫助使可以表達出來的基因數(shù)量增加了20萬倍,,同時也使新的蛋白折疊、蛋白互動和調(diào)控級聯(lián)的數(shù)量大大增加,。(生物谷Bioon.com)
生物谷推薦英文摘要:
Nature doi:10.1038/nature09486
The energetics of genome complexity
Nick Lane1 & William Martin2
All complex life is composed of eukaryotic (nucleated) cells. The eukaryotic cell arose from prokaryotes just once in four billion years, and otherwise prokaryotes show no tendency to evolve greater complexity. Why not? Prokaryotic genome size is constrained by bioenergetics. The endosymbiosis that gave rise to mitochondria restructured the distribution of DNA in relation to bioenergetic membranes, permitting a remarkable 200,000-fold expansion in the number of genes expressed. This vast leap in genomic capacity was strictly dependent on mitochondrial power, and prerequisite to eukaryote complexity: the key innovation en route to multicellular life.