美國國立兒童醫(yī)院的研究者發(fā)布了一份基因治療方案,,用以改善患有遺傳性血液疾病-β地中海貧血的小鼠病況?;蚋纳剖侵甘褂脕碜曰疾⌒∈蟮奈词芫岩越⒁慌咛ジ杉毎?,其中一些干細胞系沒有遺傳患病基因,可被用于小鼠自身的移植治療,。
該研究發(fā)表在《臨床觀察期刊》(Journal of Clinical Investigation),,對于治療常染色體顯性疾病,,如β地中海貧血、結節(jié)性硬化癥或亨廷頓氏病提供了新的治療方法,。
胚胎干細胞能產生無限量的細胞類型,,因此可作為很多疾病的治療選擇。未受精卵可被培育形成胚胎干細胞,,所謂的孤雌胚胎干細胞,。
國立兒童醫(yī)院研究院分子與人類遺傳中心的首席研究員邁克勞林博士說,孤雌胚胎干細胞可分化成很多的人體組織,。此前,,研究組表明來自孤雌生殖細胞的血液細胞可在小鼠體內提供長期、健康的血液置換,。孤雌生殖干細胞的優(yōu)點是不需要受精的過程,,并且接收者的免疫系統(tǒng)不會將他們視為異體,最大限度地減少了排斥問題,。此外,,由于孤雌胚胎干細胞來源于僅含有單一遺傳信息的生殖細胞,因此它們不會出現(xiàn)異?;?。
遺傳于母體的異常基因的單拷貝體可引起所謂的常染色體顯性遺傳疾病,?;颊唧w內的異常基因壓制正?;?,從而引起疾病。在正常的生殖過程中,,每一個父母通過生殖細胞提供一個基因拷貝以繁育后代,。因此,,一個患有常染色體顯性疾病患者的生殖細胞既可能傳遞異?;蚩截愐部赡軅鬟f正常的。
如果病患捐獻者有一個有缺陷的基因拷貝和一個正常的,,其中僅一個基因拷貝用于正常的生殖,,我們能夠選擇有兩個正常拷貝的卵子細胞源性胚胎干細胞,。當一個基因拷貝異常,,來自病患的胚胎干細胞理論上可用于改善多種發(fā)生的疾病。為了測試這個理論,,來自于賓夕法尼亞大學,、北卡羅來納大學和明尼蘇達大學的專家們共同檢測孤雌胚胎干細胞是否可用于患有中間型地中海貧血的小鼠進行組織修復,。中間型地中海貧血是一個遺傳性血液紊亂,身體缺少足夠正常的血紅蛋白,,導致血紅細胞被過多破壞以及貧血癥狀,。他們使用引起貧血的有缺陷基因拷貝的小鼠模型。
根據(jù)該研究組先前的研究,,國立兒童醫(yī)院的研究人員斯格瑞特博士,,從患病雌鼠的未受精卵里獲取胚胎干細胞,確認這些干細胞系只含有"健康的"血紅蛋白基因,。這些"基因清潔"的胚胎干細胞系被轉化為細胞,,然后植入到患病的小鼠。在移植后的五周取出血液樣本,,顯示接收者的血液中出現(xiàn)了先前接受的細胞,。他們的血紅細胞調整到正常小鼠體內的正常值,紅細胞計數(shù),,紅細胞壓積和血紅蛋白恢復正常水平,。
總而言之,我們觀察到小鼠體內的地中海貧血癥狀持續(xù)改善,。我們的發(fā)現(xiàn)表明使用生殖細胞產生"無病"的胚胎干細胞,,是解決遺傳疾病的一個方法。(生物谷Bioon.com)
中文原文:http://www.chinastemcell.org/page/zixun_xwdtlist.aspx?infoid=993
英文原文:http://www.sciencedaily.com/releases/2011/01/110110121701.htm
生物谷推薦英文摘要:
J Clin Invest. doi:10.1172/JCI45377.
Gene therapy by allele selection in a mouse model of beta-thalassemia
Sigrid Eckardt1, N. Adrian Leu2, Ashley Yanchik2, Seigo Hatada3, Michael Kyba4 and K. John McLaughlin1,5
1Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA.
2University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA.
3Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
4Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
5Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
To be of therapeutic use, autologous stem cells derived from patients with inherited genetic disorders require genetic modification via gene repair or insertion. Here, we present proof of principle that, for diseases associated with dominant alleles (gain-of-function or haploinsufficient loss-of-function), disease allele–free ES cells can be derived from afflicted individuals without genome manipulation. This approach capitalizes on the derivation of uniparental cells, such as parthenogenetic (PG) ES cell lines from disease allele–free gametes. Diploid mammalian uniparental embryos with only maternally (oocyte-) or paternally (sperm-)derived genomes fail early in development due to the nonequivalence of parental genomes caused by genomic imprinting. However, these uniparental embryos develop to the blastocyst stage, allowing the derivation of ES cell lines. Using a mouse model for dominant beta-thalassemia, we developed disease allele–free PG ES cell lines from the oocytes of affected animals. Phenotype correction was obtained in donor-genotype recipients after transplantation of in vitro hematopoietic ES cell derivatives. This genetic correction strategy without gene targeting is potentially applicable to any dominant disease. It could also be the sole approach for larger or more complex mutations that cannot be corrected by homologous recombination.