近日,,美國埃默里大學(xué)開發(fā)出一種使加在細(xì)胞表面的力“可視化”的新方法,,讓人們能實(shí)時且詳細(xì)地直接“看到”這些力,。相關(guān)論文發(fā)表在近期出版的《自然·方法學(xué)》上(Nature Methods),。
埃默里大學(xué)生物分子化學(xué)副教授卡利德·沙雷塔領(lǐng)導(dǎo)的研究小組開發(fā)出一種熒光傳感技術(shù),,使用了一種兩端經(jīng)過化學(xué)修改的靈活聚合體,,一端為熒光打開傳感器,,能與細(xì)胞表面的受體結(jié)合;另一端結(jié)合一個滅熒光分子,。沙雷塔解釋說:“聚合體上受力時它會伸長,,與另一端的距離增大,這樣熒光信號就被打開,,并變得更亮,。檢測熒光亮度就能確定所施加的力度。”
研究小組用表皮生長因子受體(EGFR)演示了這一技術(shù),,并繪制了EGFR在細(xì)胞內(nèi)吞作用(細(xì)胞的蛋白質(zhì)受體接受一個配體)初期產(chǎn)生的力,,顯示出此過程中,細(xì)胞并非被動地吸收配體,,而是主動地把它吸進(jìn)內(nèi)部,。
細(xì)胞在它們的環(huán)境中不停地推推拉拉,以力的方式互相溝通,細(xì)胞間作用力的方式,,也體現(xiàn)了其在肺部或心臟等不同組織器官中的特有結(jié)構(gòu),。要真正理解細(xì)胞運(yùn)作,,必須從分子水平理解細(xì)胞的力學(xué)機(jī)制,,第一步就是檢測加在細(xì)胞表面特定受體上的力。新技術(shù)能將一個分子通過整個細(xì)胞表面施加給另一個分子的力“可視化”,,通過檢測細(xì)胞上的作用力,,許多生化秘密將進(jìn)一步揭開,。
而且新技術(shù)是非侵入式的,不用修改細(xì)胞,,用一架標(biāo)準(zhǔn)熒光顯微鏡就能檢測任何單個蛋白質(zhì)或分子加于細(xì)胞表面的力,,時間和空間分辨率也更高。“這一方法能用于幾乎任何受體,,為研究各類細(xì)胞表面的數(shù)千種膜結(jié)合受體之間的化學(xué)和力學(xué)相互作用打開了大門,。我們希望在研究生物系統(tǒng)時,檢測細(xì)胞力能成為一項(xiàng)標(biāo)準(zhǔn)生化技術(shù),。”沙雷塔說,,“繪制這種力有助于診斷并治療與細(xì)胞機(jī)制有關(guān)的疾病。比如癌細(xì)胞的運(yùn)動與正常細(xì)胞不同,,如果EGFR過于活躍,,就會導(dǎo)致癌癥。如果我們能理解拉扯EGFR的力怎樣改變了它的運(yùn)動路徑,,是否在癌癥中起著關(guān)鍵作用,,就可能設(shè)計(jì)出針對這一過程的藥物。”(生物谷Bioon.com)
doi:10.1038/nmeth.1747
PMC:
PMID:
Visualizing mechanical tension across membrane receptors with a fluorescent sensor
Daniel R Stabley,1 Carol Jurchenko,1 Stephen S Marshall1 & Khalid S Salaita1
We report a fluorescence-based turn-on sensor for mapping the mechanical strain exerted by specific cell-surface proteins in living cells. The sensor generates force maps with high spatial and temporal resolution using conventional fluorescence microscopy. We demonstrate the approach by mapping mechanical forces during the early stages of regulatory endocytosis of the ligand-activated epidermal growth factor receptor (EGFR).Our tension sensor design provides a general method for mapping mechanical tension experienced by specific membrane proteins on the surface of living cells. These tension maps provide, to our knowledge, the first direct evidence showing that mechanical forces are associated with the initial stages of EGF ligand internalization. This method could be applied to rapidly study chemomechanical interactions across nearly any receptor or cell type. The inherent flexibility of the platform may also enable the investigation of mechanical force transmission across cell-cell junctions, such as those between T cells and antigen-presenting cells as well as epithelial cell junctions, which are typically not amenable to direct investigations by other methods.