美國賓夕法尼亞大學(xué)佩雷爾曼醫(yī)學(xué)院(Perelman School of Medicine)細(xì)胞和發(fā)育生物學(xué)教授Nancy Speck博士發(fā)現(xiàn)在發(fā)育中的胚胎里造血干細(xì)胞(hematopoietic blood stem cells, HSCs)的直接前體細(xì)胞存在分子標(biāo)記Ly6a,從而為利用細(xì)胞工程技術(shù)讓前體細(xì)胞制造造血干細(xì)胞提供極其需要的新啟示,。因?yàn)樵诔赡瓴溉閯?dòng)物骨髓中發(fā)現(xiàn)的造血干細(xì)胞能夠產(chǎn)生身體所有血細(xì)胞類型,,解開它們來源的秘密可能有助于更好地操縱胚胎干細(xì)胞產(chǎn)生新的血細(xì)胞用于治療。研究結(jié)果這周發(fā)表在《細(xì)胞-干細(xì)胞》(Cell Stem Cell)期刊上,。
Speck說,“干細(xì)胞治療的最終目標(biāo)是提取前體干細(xì)胞,,并將它們分化為某種特定細(xì)胞系來替換成人或小孩身上生病或死亡的細(xì)胞,。”她說,第一要事就是“人們必須要理解胚胎上這些是如何發(fā)生的”,。
以前的研究表明造血干細(xì)胞來源于血管上一小群稱作內(nèi)皮細(xì)胞的細(xì)胞,。但是,人們?nèi)圆磺宄刂涝谠缙诎l(fā)育中哪些內(nèi)皮細(xì)胞轉(zhuǎn)換為造血干細(xì)胞,。
胚胎中,,存在多重血細(xì)胞發(fā)育階段,。第一階段就是給予胚胎一個(gè)快速氧氣源,最后一個(gè)階段就是開啟造血干細(xì)胞發(fā)育,,而這些干細(xì)胞最終存儲于成體骨髓中,。Speck說,實(shí)驗(yàn)室中能夠利用胚胎或誘導(dǎo)性多功能干細(xì)胞產(chǎn)生第一波祖細(xì)胞,,但是產(chǎn)生造血干細(xì)胞的努力已失敗了,。
Speck說,“理解造血干細(xì)胞的發(fā)育起源對于了解在實(shí)驗(yàn)室中如何利用胚胎或誘導(dǎo)性多功能干細(xì)胞產(chǎn)生它們是非常重要的,。”
這篇研究讓讓血液學(xué)家能夠成功地制造造血干細(xì)胞更加接近一步?,F(xiàn)在科學(xué)家們能夠從內(nèi)皮細(xì)胞中制造血細(xì)胞,并且能夠在胚胎中監(jiān)控它們,。但是并不是所有的內(nèi)皮細(xì)胞產(chǎn)生造血干細(xì)胞,。研究小組利用一種特定的標(biāo)記來追蹤造血干細(xì)胞的發(fā)育。在胚胎血細(xì)胞發(fā)育第一階段中的祖細(xì)胞和發(fā)育較后階段的造血干細(xì)胞是從不同的產(chǎn)生血液的內(nèi)皮細(xì)胞群體分化而來的,。產(chǎn)生造血干細(xì)胞的內(nèi)皮細(xì)胞表達(dá)分子標(biāo)記Ly6a,,但是這種標(biāo)記并不在制造第一階段血細(xì)胞的內(nèi)皮細(xì)胞中表達(dá)。
知道更多關(guān)于造血干細(xì)胞的細(xì)節(jié)和它的不同分子標(biāo)記將有助于在實(shí)驗(yàn)室中制造造血干細(xì)胞用于干細(xì)胞治療,,所以,,比如白血病病人---他們當(dāng)中很多人不能找到合適的捐獻(xiàn)者---就可能使用他們自己的細(xì)胞制造造血干細(xì)胞以及由于血癌和針對血癌的一些治療耗盡的血細(xì)胞。(生物谷Bioon.com:towersimper編譯)
doi:10.1016/j.stem.2011.10.003
PMC:
PMID:
Erythroid/Myeloid Progenitors and Hematopoietic Stem Cells Originate from Distinct Populations of Endothelial Cells
Michael J. Chen, Yan Li, Maria Elena De Obaldia, Qi Yang, Amanda D. Yzaguirre, Tomoko Yamada-Inagawa, Chris S. Vink, Avinash Bhandoola, Elaine Dzierzak, Nancy A. Speck
Hematopoietic stem cells (HSCs) and an earlier wave of definitive erythroid/myeloid progenitors (EMPs) differentiate from hemogenic endothelial cells in the conceptus. EMPs can be generated in vitro from embryonic or induced pluripotent stem cells, but efforts to produce HSCs have largely failed. The formation of both EMPs and HSCs requires the transcription factor Runx1 and its non-DNA binding partner core binding factor β (CBFβ). Here we show that the requirements for CBFβ in EMP and HSC formation in the conceptus are temporally and spatially distinct. Panendothelial expression of CBFβ in Tek-expressing cells was sufficient for EMP formation, but was not adequate for HSC formation. Expression of CBFβ in Ly6a-expressing cells, on the other hand, was sufficient for HSC, but not EMP, formation. The data indicate that EMPs and HSCs differentiate from distinct populations of hemogenic endothelial cells, with Ly6a expression specifically marking the HSC-generating hemogenic endothelium.