來(lái)自英國(guó)醫(yī)學(xué)研究委員會(huì)的科學(xué)家發(fā)現(xiàn)大腦血管產(chǎn)生的一種蛋白能夠用來(lái)幫助大腦在遭受損傷或疾病后自我修復(fù),。
他們發(fā)現(xiàn)這種稱作β-細(xì)胞素(Betacellulin, BTC)的蛋白通過(guò)刺激大腦干細(xì)胞增殖和形成新的神經(jīng)細(xì)胞而促進(jìn)大腦再生,。2012年1月9日,,這些發(fā)現(xiàn)發(fā)表在PNAS期刊上,意味著在未來(lái),,β-細(xì)胞素可能促進(jìn)人們?yōu)橹T如中風(fēng),、創(chuàng)傷性腦損傷和癡呆之類的疾病開(kāi)發(fā)出再生性療法。
盡管成年人大腦中大多數(shù)神經(jīng)細(xì)胞(即神經(jīng)元)是子宮內(nèi)和出生后不久產(chǎn)生的,,但是在一生當(dāng)中,,新的神經(jīng)元繼續(xù)通過(guò)干細(xì)胞分化而產(chǎn)生。這些神經(jīng)干細(xì)胞位于大腦的兩個(gè)小“巢(niche,,譯者注:也常譯作‘微環(huán)境’)”中,,給負(fù)責(zé)嗅覺(jué)的嗅球(olfactory bulb)和參與記憶形成和學(xué)習(xí)的海馬(hippocampus)提供新的神經(jīng)元。
這些小巢產(chǎn)生很多控制神經(jīng)干細(xì)胞如何快速分裂和它們產(chǎn)生的細(xì)胞類型的信號(hào),。在這些小巢中的干細(xì)胞產(chǎn)生神經(jīng)元,。但是遭受大腦損傷如中風(fēng)后,它們做出反應(yīng)從而產(chǎn)生更多的神經(jīng)膠質(zhì)細(xì)胞(glial cell),,導(dǎo)致瘢痕組織形成,。
來(lái)自英國(guó)醫(yī)學(xué)研究委員會(huì)國(guó)家醫(yī)學(xué)研究所的Robin Lovell-Badge博士領(lǐng)導(dǎo)該項(xiàng)研究,他說(shuō),,“盡管人們還沒(méi)有完全了解大腦干細(xì)胞巢,,但是似乎是很多因子共同作用控制這些干細(xì)胞的命運(yùn)。我們相信這些因子獲得適當(dāng)平衡從而精確控制產(chǎn)生的新神經(jīng)元數(shù)量以便匹配上各種正常條件下的需求量,。但是當(dāng)遭受創(chuàng)傷或疾病時(shí),,這些干細(xì)胞不是不能處理好增加的需求量,就是以犧牲長(zhǎng)期修復(fù)的代價(jià)優(yōu)先進(jìn)行損傷控制,。我們希望我們的新發(fā)現(xiàn)能夠給源自干細(xì)胞生物學(xué)的激動(dòng)人心的治療方法增加新的選擇,,最終可能開(kāi)發(fā)出更好的方法治療受損大腦。”
研究人員研究了小鼠大腦干細(xì)胞巢內(nèi)血管中細(xì)胞產(chǎn)生的β-細(xì)胞素對(duì)神經(jīng)元形成速度的影響,。他們發(fā)現(xiàn)β-細(xì)胞素給這些干細(xì)胞和分裂中的細(xì)胞即成神經(jīng)細(xì)胞(neuroblast)發(fā)送信號(hào),,促進(jìn)它們?cè)鲋场?/p>
當(dāng)給小鼠施加更多的β-細(xì)胞素時(shí),它們的大腦中干細(xì)胞和成神經(jīng)細(xì)胞數(shù)量顯著增加,,從導(dǎo)致很多新神經(jīng)元產(chǎn)生,。相反,當(dāng)給小鼠施加阻斷β-細(xì)胞素活性的抗體時(shí),,則可抑制新神經(jīng)元產(chǎn)生,。
因?yàn)?beta;-細(xì)胞素導(dǎo)致新神經(jīng)元而不是神經(jīng)膠質(zhì)細(xì)胞產(chǎn)生,這種蛋白可能改善旨在修復(fù)大腦損傷的再生性醫(yī)學(xué)治療的療效,。
該國(guó)家醫(yī)學(xué)研究所主任Jim Smith教授說(shuō),,“再生性醫(yī)學(xué)有潛力給很多當(dāng)前不能有效治療的人類疾病帶來(lái)新的治療對(duì)策,。這項(xiàng)研究是邁向我們目標(biāo)---從組織和器官替換轉(zhuǎn)移到人體內(nèi)在性修復(fù)和再生潛能---的重要一步,。”
這項(xiàng)研究目前還遠(yuǎn)不能進(jìn)入臨床治療,,還需要進(jìn)一步實(shí)驗(yàn)解釋β-細(xì)胞素在大腦中的正常作用,并在動(dòng)物中單獨(dú)探索β-細(xì)胞素對(duì)受損大腦的影響,,或者與移植的神經(jīng)干細(xì)胞一起探索它的影響,。(生物谷:towersimper編譯)
doi:10.1073/pnas.1016199109
PMC:
PMID:
Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis
María Victoria Gómez-Gaviro, Charlotte E. Scott, Abdul K. Sesay, Ander Matheu, Sarah Booth, Christophe Galichet, and Robin Lovell-Badge
Neural stem cells (NSCs) reside in specialized niches in the adult mammalian brain, including the subventricular zone and the dentate gyrus, which act to control NSC behavior. Among other cell types within these niches, NSCs are found in close proximity to blood vessels. We carried out an analysis of the interaction between endothelial cells and NSCs, and show that betacellulin (BTC), a member of the EGF family and one of several signaling molecules made by the former, induces NSC proliferation and prevents spontaneous differentiation in culture. When infused into the lateral ventricle, BTC induces expansion of NSCs and neuroblasts, and promotes neurogenesis in the olfactory bulb and dentate gyrus, whereas specific blocking antibodies reduce the number of stem/progenitor cells. BTC-null mice are less able to regenerate neuroblast numbers compared with WT littermates following depletion of proliferating cells using cytosine-β-D-arabinofuranoside. BTC acts via both the EGF receptor, located on NSCs, and ErbB4, located on neuroblasts, with the latter explaining why its effects are distinct from those of EGF itself. Our results suggest that BTC could be a good candidate to aid regenerative therapies.