2012年1月20日,,德州大學(xué)西南醫(yī)學(xué)中心的研究人員在Nature雜志發(fā)表文章"Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis"指出,運動對于血糖代謝的益處可能源于身體“吞食自身“的能力。
自體吞噬,,是細胞在饑餓和其他壓力情況下,通過降解自身損傷或者不需要的部分來產(chǎn)生能量的過程,有時被稱作細胞的“管家途徑”。
眾所周知,,運動在很多方面對健康有好處,但是機理并不清楚,。同樣自體吞噬也有很多好處,,這些好處與運動的作用有緊密的聯(lián)系。我們假設(shè)運動的某些益處可以通過自體吞噬來解釋,。文章通訊作者Dr. Beth Levine說道,,他是內(nèi)科學(xué)和微生物學(xué)的教授,同時負責德州大學(xué)西南醫(yī)學(xué)的自體吞噬研究中心,。
Levine博士,,是醫(yī)學(xué)中心受到霍華德·休斯醫(yī)學(xué)研究所資助的研究員,決定關(guān)注研究在高脂飲食的情況下,,運動可以預(yù)防血糖異常的能力,。她在小鼠方面的研究首先提供了運動能夠激活自體吞噬的作用的證據(jù)。研究人員發(fā)現(xiàn),,遺傳上不能提高自體吞噬的小鼠,,在短期運動時,,忍耐力下降,,而且也不能防止血糖異常。
這個發(fā)現(xiàn)指導(dǎo)團隊進行研究,,在糖尿病中,,自體吞噬對于慢性運動所起到的保護作用是否很重要。實驗分為對照組和實驗組,,實驗組為遺傳上不能提高自體吞噬的小鼠,,進行高脂飲食,兩組都表現(xiàn)出糖尿病樣的血糖代謝改變,。但是,,研究人員發(fā)現(xiàn),運動逆轉(zhuǎn)了對照組中的血糖異常,,但對實驗組無效,。
在自體吞噬缺失的小鼠中,運動不能提高糖代謝水平,,這個發(fā)現(xiàn)強烈的暗示自體吞噬是一個重要的機理,,運動通過它能夠防止糖尿病。Dr. Levine認為這個發(fā)現(xiàn)也提供了其他的可能,自體吞噬的激活可能對運動的其他好處,,包括防止癌癥,,神經(jīng)退化疾病和老化也有幫助。
Dr. Levine作出了很多基礎(chǔ)發(fā)現(xiàn),,大部分歸功于擴展自體吞噬領(lǐng)域,。1999年,她找到了第一個哺乳動物自體吞噬基因beclin 1,該基因與乳腺癌的抑制因子相關(guān)聯(lián),,這也標志著第一次發(fā)現(xiàn)了人類疾病和自體吞噬基因有關(guān),。
doi:10.1038/nature10758
PMC:
PMID:
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
Congcong He, Michael C. Bassik, Viviana Moresi, Kai Sun, Yongjie Wei, Zhongju Zou, Zhenyi An, Joy Loh, Jill Fisher, Qihua Sun, Stanley Korsmeyer, Milton Packer, Herman I. May, Joseph A. Hill, Herbert W. Virgin, Christopher Gilpin, Guanghua Xiao, Rhonda Bassel-Duby, Philipp E. Scherer & Beth Levine
Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes1. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control2. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism3. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance4, 5, 6. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2–beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.