在小鼠連續(xù)性生長(zhǎng)的切牙發(fā)育中影響干細(xì)胞作用的突變導(dǎo)致異常發(fā)育,、過多的牙釉質(zhì)積累和通常不會(huì)磨損的類似長(zhǎng)牙的切牙。圖片來自O(shè)phir Klein,。
瞧一下實(shí)驗(yàn)室牙齒樣品圖片,。這是瘋狂的科學(xué)家的杰作?
對(duì)于美國(guó)加州大學(xué)舊金山分校Ophir Klein博士而言,,它確實(shí)如此,。他能夠產(chǎn)生切牙(incisor)要比平常的小家鼠更加類似于長(zhǎng)毛象(Woolly Mammoth)長(zhǎng)牙(tusk)的的小鼠,對(duì)此他感到非常高興,。
他是一位聲望快速上升的實(shí)驗(yàn)室科學(xué)家,,獲得美國(guó)國(guó)家衛(wèi)生研究院頒發(fā)的一項(xiàng)高度競(jìng)爭(zhēng)性的獎(jiǎng)金為230萬美元的主任新近創(chuàng)新者獎(jiǎng)?wù)?Director’s New Innovator Award)。同時(shí)Klein也是一名實(shí)習(xí)醫(yī)學(xué)遺傳學(xué)家,,也是一個(gè)旨在更好診斷和治療年輕病人牙齒和面部畸形的加州大學(xué)舊金山分校臨床試驗(yàn)小組的成員,。
利用小鼠開展研究是一種了解更多關(guān)于這些損壞外形的發(fā)育是如何產(chǎn)生的方法。Klein也希望利用獲得的知識(shí)開發(fā)讓包括牙齒在內(nèi)的組織再生的策略以便用于進(jìn)行新的治療,。
牙齒異常比較常見
Klein在最近舉行的研討會(huì)上說,,“在出生缺陷中面部是身體中最受影響的部分之一”,面部發(fā)育程序出錯(cuò)就會(huì)影響外貌和有時(shí)甚至是至關(guān)重要的功能,。“面部容納著感覺器官,,決定著吃和呼吸的能力。它也極大地影響我們對(duì)自身的感知,。”
Klein說,,特別地,牙齒異常要比大多數(shù)內(nèi)科醫(yī)生所認(rèn)為的更加常見,。
Klein說,,制造牙齒是一個(gè)宏偉目標(biāo),,但是不像干細(xì)胞治療所針對(duì)的一些其他組織,牙齒可能不需要完整的形成就足夠發(fā)揮作用,。
但是更為基礎(chǔ)的是,,主持加州大學(xué)舊金山分校顱面與間質(zhì)細(xì)胞生物學(xué)項(xiàng)目(Craniofacial and Mesenchymal Biology Program)的Klein研究牙齒和其他組織以便了解關(guān)于干細(xì)胞如何影響全身發(fā)育的基本事實(shí)。
Klein想知道干細(xì)胞和它們的行為如何被它們從周圍細(xì)胞接收到的信號(hào)輪流塑造,。如果這種有序的信號(hào)序列發(fā)生混亂,,小鼠就長(zhǎng)出長(zhǎng)牙同時(shí)也產(chǎn)生其他意想不到的結(jié)果。但是正確的分子配方可能有朝一日導(dǎo)致人們開發(fā)出新的基于細(xì)胞的療法治療因損傷,、疾病或衰老導(dǎo)致的組織缺損,。
牙釉質(zhì)發(fā)育失控
絕大多數(shù)人類細(xì)胞成熟并且已發(fā)生特化,因而沒有干細(xì)胞的特性,。但是多虧少量的自我更新的干細(xì)胞群體,,人類、實(shí)驗(yàn)室小鼠和不計(jì)其數(shù)的其他生物能夠生長(zhǎng)和修復(fù)損傷,。依賴于所處的發(fā)育階段,,這些能力在潛能性和效力上存在差別。
一個(gè)極端的例子就是人們探討非常多的胚胎干細(xì)胞,。它們?cè)诰訉?duì)卵子受精后只需經(jīng)過幾輪細(xì)胞分裂就能夠被采集到,。胚胎干細(xì)胞能夠產(chǎn)生身體中幾乎任何一種細(xì)胞類型。
其他的干細(xì)胞是器官或組織特異性的,。這些成體干細(xì)胞相對(duì)而言比較稀少,。Klein研究胚胎干細(xì)胞和成體干細(xì)胞。
不像我們自己的牙齒,,小鼠的切牙是連續(xù)性生長(zhǎng)的。就此而言,,這種嚙齒類動(dòng)物就應(yīng)感謝在它一生當(dāng)中都持續(xù)存在的干細(xì)胞,。這些干細(xì)胞產(chǎn)生喪失干細(xì)胞特征的細(xì)胞。這些細(xì)胞后代接著產(chǎn)生特化細(xì)胞---成釉質(zhì)細(xì)胞( enamel-forming ameloblast)和成牙本質(zhì)細(xì)胞(dentin-forming odontoblast),。在生命初期,,人類擁有類似地促進(jìn)牙齒發(fā)育的干細(xì)胞,但是在童年早期我們的成年牙齒完全形成之后,,它們就失活了,。
有長(zhǎng)牙的小鼠是Klein對(duì)賦予干細(xì)胞性質(zhì)的分子進(jìn)行操控導(dǎo)致牙釉質(zhì)發(fā)育紊亂的結(jié)果。正常小鼠切牙的下半部分是由牙釉質(zhì)---哺乳動(dòng)物身體上最堅(jiān)強(qiáng)的成分---構(gòu)成的,。上半部分是由牙本質(zhì)(dentin)構(gòu)成的,,牙本質(zhì)也是一種礦化的組織,但是更加柔軟,。在人類牙齒中,,牙本質(zhì)被牙釉質(zhì)覆蓋和保護(hù),。
但是當(dāng)小鼠在一生當(dāng)中咀嚼食物時(shí),它的切牙中未受保護(hù)的牙本質(zhì)組分要比牙釉質(zhì)更容易發(fā)生磨損,。甚至當(dāng)小鼠的牙齒繼續(xù)生長(zhǎng)時(shí),,它們也會(huì)發(fā)生磨損。為了達(dá)到平衡,,牙齒通常維持在一個(gè)對(duì)小鼠而言剛剛好的長(zhǎng)度,,但是在突變小鼠中不能如此。Klein和他以前的導(dǎo)師和干細(xì)胞帶路人Gail Martin博士一起追蹤這種額外長(zhǎng)的牙齒產(chǎn)生的原因,。他們發(fā)現(xiàn)原因就是特異性基因改變導(dǎo)致異常分子信號(hào)傳導(dǎo),。這種異常信號(hào)傳導(dǎo)促進(jìn)切牙各個(gè)面上產(chǎn)生牙釉質(zhì)的干細(xì)胞激活,從而阻止正常的牙齒損耗,。
MicroRNAs有助于影響細(xì)胞命運(yùn)
Klein如今一直在詳細(xì)研究導(dǎo)致這種可怕長(zhǎng)牙的實(shí)驗(yàn),。在他最近的切牙研究中,即2011年9月8日發(fā)表在PLoS ONE期刊上的一篇論文,,Klein鑒定出產(chǎn)生位于小鼠切牙底部的成體干細(xì)胞獨(dú)特性質(zhì)的其他分子,。
Klein鑒定出的分子是一類稱作為microRNAs的分子的獨(dú)特性成員。在藥物開發(fā)期間,,microRNAs自然地有助于影響細(xì)胞命運(yùn),。如今,研究人員正在探索這些小分子如何可能能夠被用來操縱很多類型的細(xì)胞群體,。這些microRNAs中的一些在不同組織中發(fā)揮著類似作用,。在Klein與他的同事Andrew Jheon博士和Chunying Li博士發(fā)現(xiàn)的眾多microRNAs當(dāng)中,有一個(gè)microRNA能夠激活牙齒中的干細(xì)胞,,而且人們之前早已發(fā)現(xiàn)它還促進(jìn)產(chǎn)生毛囊的干細(xì)胞激活,。
Klein說,激活牙齒中干細(xì)胞分裂和自我更新的一些microRNA分子也在腸道中發(fā)揮類似作用,,因?yàn)樵谀c道中,,細(xì)胞很快地生長(zhǎng)和死亡,位于腸道表面的細(xì)胞群體大約每隔5天就更新一次,。
令人注目的是,,根據(jù)Klein和他的合作者基因泰克公司副總裁Fred de Sauvage博士于2011年10月31日發(fā)表在《自然》期刊上的一篇研究論文,他們通過操縱這些分子發(fā)現(xiàn)在一些情形中,,我們珍貴的干細(xì)胞可能是冗余的,。在腸道中有一種干細(xì)胞類型似乎并不起著太大作用除非另一種曾經(jīng)被認(rèn)為無關(guān)緊要的干細(xì)胞群體被完全消滅。當(dāng)這種情形發(fā)生時(shí),,這種正常情形下懶散的干細(xì)胞群體便迅速采取行動(dòng)和前來營(yíng)救,。
Klein繼續(xù)研究microRNAs和其他分子以便更好地理解細(xì)胞命運(yùn)和潛能以及一類干細(xì)胞群體如何根據(jù)來自周圍環(huán)境的信號(hào)發(fā)生縮減或擴(kuò)大。他期待他了解到的知識(shí)將產(chǎn)生關(guān)于如何再生病人組織的新觀點(diǎn),。
Klein說,,“在體外利用干細(xì)胞再生的組織仍然沒用于治療顱面畸形的臨床實(shí)踐,。但是我們關(guān)于我們體內(nèi)不同細(xì)胞群體在干細(xì)胞指導(dǎo)下如何產(chǎn)生、擴(kuò)增和發(fā)生特化的知識(shí)正在快速地積累,。我認(rèn)為基于人們不斷增加的理解醫(yī)學(xué)發(fā)展的未來是光明的,。” (生物谷:towersimper編譯)
doi:10.1371/journal.pone.0024536
PMC:
PMID:
Expression of MicroRNAs in the Stem Cell Niche of the Adult Mouse Incisor
Andrew H. Jheon, Chun-Ying Li, Timothy Wen, Frederic Michon, Ophir D. Klein
The mouse incisor is a valuable but under-utilized model organ for studying the behavior of adult stem cells. This remarkable tooth grows continuously throughout the animal's lifetime and houses two distinct epithelial stem cell niches called the labial and lingual cervical loop (laCL and liCL, respectively). These stem cells produce progeny that undergo a series of well-defined differentiation events en route to becoming enamel-producing ameloblasts. During this differentiation process, the progeny move out of the stem cell niche and migrate toward the distal tip of the tooth. Although the molecular pathways involved in tooth development are well documented, little is known about the roles of miRNAs in this process. We used microarray technology to compare the expression of miRNAs in three regions of the adult mouse incisor: the laCL, liCL, and ameloblasts. We identified 26 and 35 differentially expressed miRNAs from laCL/liCL and laCL/ameloblast comparisons, respectively. Out of 10 miRNAs selected for validation by qPCR, all transcripts were confirmed to be differentially expressed. In situ hybridization and target prediction analyses further supported the reliability of our microarray results. These studies point to miRNAs that likely play a role in the renewal and differentiation of adult stem cells during stem cell-fueled incisor growth.
doi:10.1038/nature10408
PMC:
PMID:
A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
Hua Tian, Brian Biehs, Søren Warming, Kevin G. Leong, Linda Rangell, Ophir D. Klein & Frederic J. de Sauvage
The small intestine epithelium renews every 2 to 5 days, making it one of the most regenerative mammalian tissues. Genetic inducible fate mapping studies have identified two principal epithelial stem cell pools in this tissue. One pool consists of columnar Lgr5-expressing cells that cycle rapidly and are present predominantly at the crypt base1. The other pool consists of Bmi1-expressing cells that largely reside above the crypt base2. However, the relative functions of these two pools and their interrelationship are not understood. Here we specifically ablated Lgr5-expressing cells in mice using a human diphtheria toxin receptor (DTR) gene knocked into the Lgr5 locus. We found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for the elimination of this population. After ablation of Lgr5-expressing cells, progeny production by Bmi1-expressing cells increased, indicating that Bmi1-expressing stem cells compensate for the loss of Lgr5-expressing cells. Indeed, lineage tracing showed that Bmi1-expressing cells gave rise to Lgr5-expressing cells, pointing to a hierarchy of stem cells in the intestinal epithelium. Our results demonstrate that Lgr5-expressing cells are dispensable for normal intestinal homeostasis, and that in the absence of these cells, Bmi1-expressing cells can serve as an alternative stem cell pool. These data provide the first experimental evidence for the interrelationship between these populations. The Bmi1-expressing stem cells may represent both a reserve stem cell pool in case of injury to the small intestine epithelium and a source for replenishment of the Lgr5-expressing cells under non-pathological conditions.