近日,來自布里斯托大學(xué)的數(shù)學(xué)家和愛丁堡大學(xué)的生物學(xué)家聯(lián)合開展了一項(xiàng)分子生物學(xué)實(shí)驗(yàn),,研究者Clive Bowsher和Peter Swain將他們的研究成果刊登在了近日的國際雜志PNAS上,,文章中,研究者闡述了他們?cè)谘芯炕罴?xì)胞代謝機(jī)制的時(shí)候,,如何從眾多的噪聲(noise)之中分離出細(xì)胞信號(hào)分子(signal),。
細(xì)胞可以用內(nèi)在的噪聲生化機(jī)制來在波動(dòng)的環(huán)境中做出正確的決定,比如說某些效應(yīng)可以產(chǎn)生重要的,、不可預(yù)知的改變,,就好像隨機(jī)性一樣,要么會(huì)隨著時(shí)間過去,,要么會(huì)引起遺傳上同一的細(xì)胞,,為了理解細(xì)胞是如何開發(fā)和控制這些生化機(jī)制上的波動(dòng),科學(xué)家必須識(shí)別出隨機(jī)性的來源,,對(duì)它們產(chǎn)生的效應(yīng)進(jìn)行定位,并且區(qū)分?jǐn)y帶的信息在生物環(huán)境到嘈雜環(huán)境中的變化,。
研究者的這篇文章揭示了如何將這種生物化學(xué)的網(wǎng)絡(luò)的上下波動(dòng)分解成多重的組分,,同時(shí)也揭示了如何設(shè)計(jì)實(shí)驗(yàn)性的報(bào)道分子來檢測活細(xì)胞中的這些組分。數(shù)學(xué)家Clive Bowsher為動(dòng)態(tài)系統(tǒng)提供了不一致的分解技術(shù),,隨后研究者們合作,,在系統(tǒng)生物學(xué)內(nèi)在噪聲的概念上,、信息容量的概念上以及相關(guān)比之間建立了嚴(yán)格的聯(lián)系,研究者們進(jìn)而構(gòu)建出了一種全面化的信號(hào)噪聲比系統(tǒng)來測量各個(gè)組分之間的不一致,,從而對(duì)經(jīng)過生化網(wǎng)絡(luò)上的信息流進(jìn)行定量,,定量其效率的高低。
這篇PNAS上的文章中,,研究者們描寫了對(duì)酵母細(xì)胞進(jìn)行的實(shí)驗(yàn),,揭示了大多數(shù)細(xì)胞的變動(dòng)都從本質(zhì)上來講都有可能是報(bào)告情報(bào)的,并且在細(xì)胞環(huán)境中歸功于細(xì)胞的上下波動(dòng),,研究結(jié)果為理解細(xì)胞中的動(dòng)態(tài)信號(hào)處理以及細(xì)胞決策提供了一定的理論依據(jù),。研究者Bowsher表示,隨著我們更好地理解細(xì)胞如何對(duì)環(huán)境作出反應(yīng),,我們將會(huì)更好地控制細(xì)胞的行為,,比如,我們能夠?qū)⑷嗽鞌y帶藥物的細(xì)胞在正確的時(shí)間成功運(yùn)輸?shù)綑C(jī)體的作用部位,。(生物谷:T.Shen編譯)
Copyright ©版權(quán)歸生物谷所有,,若未得到Bioon授權(quán),請(qǐng)勿轉(zhuǎn)載,。
doi:10.1073/pnas.1119407109
PMC:
PMID:
Identifying sources of variation and the flow of information in biochemical networks
Clive G. Bowshera,1 and Peter S. Swainb,1
To understand how cells control and exploit biochemical fluctuations, we must identify the sources of stochasticity, quantify their effects, and distinguish informative variation from confounding “noise.” We present an analysis that allows fluctuations of biochemical networks to be decomposed into multiple components, gives conditions for the design of experimental reporters to measure all components, and provides a technique to predict the magnitude of these components from models. Further, we identify a particular component of variation that can be used to quantify the efficacy of information flow through a biochemical network. By applying our approach to osmosensing in yeast, we can predict the probability of the different osmotic conditions experienced by wild-type yeast and show that the majority of variation can be informational if we include variation generated in response to the cellular environment. Our results are fundamental to quantifying sources of variation and thus are a means to understand biological “design.”