2012年9月16日 訊 /生物谷BIOON/ --II型糖尿病的一大特征在于胰腺中胰島素表達(dá)水平降低??茖W(xué)家們通常認(rèn)為這種下降的原因在于這種器官中胰島β細(xì)胞死亡,。但是在II型糖尿病病人的胰腺中,人們很少發(fā)現(xiàn)死亡的β細(xì)胞,。而且胰腺功能障礙與死亡的β細(xì)胞數(shù)量不成比例,。對(duì)此,沒(méi)有人給出一個(gè)合理的解釋,。在一項(xiàng)新研究中,,來(lái)自美國(guó)哥倫比亞大學(xué)醫(yī)學(xué)中心的研究人員證實(shí)β細(xì)胞沒(méi)有死亡,而是相反地返回到一種更加原始性的去分化的細(xì)胞類型,。這項(xiàng)研究是在小鼠體內(nèi)開(kāi)展的,,并于近期在線刊登在Cell期刊上。
在這項(xiàng)研究中,,論文通信作者Domenico Accili博士和論文共同作者Chutima Talchai推測(cè)答案可能在于蛋白FoxO1的活性,。FoxO1是一種轉(zhuǎn)錄因子,控制著基因何時(shí)開(kāi)啟或關(guān)閉,,并起著檢測(cè)體內(nèi)營(yíng)養(yǎng)狀態(tài)的作用,。當(dāng)細(xì)胞營(yíng)養(yǎng)良好時(shí),F(xiàn)oxO1停留在細(xì)胞質(zhì)之中,,并且處于失活狀態(tài),。當(dāng)處于生理性應(yīng)激如高血糖時(shí),F(xiàn)oxO1運(yùn)行到細(xì)胞核并且最終消失掉,。Accili博士說(shuō),,“我們研究的起點(diǎn)就是詢問(wèn),為什么在糖尿病早期階段FoxO1能夠進(jìn)入細(xì)胞核,?FoxO1水平下降是產(chǎn)生糖尿病的原因還是糖尿病產(chǎn)生后的結(jié)果,?”
為了解決這些問(wèn)題,Accili博士構(gòu)建出一種β細(xì)胞缺乏FoxO1的小鼠品種,。剛開(kāi)始時(shí),,小鼠似乎是正常的,但是在經(jīng)歷生理性應(yīng)激如懷孕或衰老之后,小鼠表達(dá)低水平胰島素和高水平胰高血糖素(glucagon),。這些反應(yīng)在糖尿病病人體內(nèi)也可觀察到,。
研究人員然后利用一種新的細(xì)胞譜系追蹤(cell-lineage tracing)技術(shù)來(lái)找出β細(xì)胞到底發(fā)生什么。Accili博士說(shuō),,“令我們吃驚的是,,我們發(fā)現(xiàn)β細(xì)胞并沒(méi)有消失,相反它們變成另一種不同類新的細(xì)胞,。它們?cè)谝欢ǔ潭壬蠌耐耆鼗谋磉_(dá)胰島素的細(xì)胞返回到一種未分化的類似于祖細(xì)胞的多能性發(fā)育階段,。”此外,一些β細(xì)胞變成表達(dá)胰高血糖素的細(xì)胞,,這將能夠解釋為什么糖尿病病人含有異常高水平的胰高血糖素,。在其他的糖尿病模式小鼠中,他們?cè)?beta;細(xì)胞中也觀察到同樣的變化,。
這項(xiàng)研究表明FoxO1在維持β細(xì)胞身份中發(fā)揮著至關(guān)重要的作用,。但在代謝性應(yīng)激時(shí),β細(xì)胞逐漸失去FoxO1而開(kāi)始去分化,。這些發(fā)現(xiàn)提示著阻止β細(xì)胞去分化或誘導(dǎo)它們?cè)俅畏只牟呗钥赡芨纳艻I型糖尿病病人體內(nèi)的葡萄糖平衡,。(生物谷Bioon.com)
doi: 10.1016/j.cell.2012.07.029
PMC:
PMID:
Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure
Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili
Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication.