干細(xì)胞具有在體外大量增殖和分化為多種細(xì)胞的潛能,可為再生醫(yī)學(xué)的替代療法提供充足的細(xì)胞來源,。2006年以來,日美科學(xué)家利用病毒載體轉(zhuǎn)染不同轉(zhuǎn)錄因子(Oct4, Sox2, Klf4, c-Myc等),,成功將體細(xì)胞重編程為誘導(dǎo)多能干細(xì)胞(iPS),。iPS細(xì)胞具有和胚胎干細(xì)胞類似的功能,卻繞開了胚胎干細(xì)胞研究一直面臨的倫理和法律等諸多障礙,,因此在醫(yī)療領(lǐng)域的應(yīng)用前景非常廣闊,。然而病毒載體及原癌基因的應(yīng)用使iPS的安全性受到質(zhì)疑;而且iPS的誘導(dǎo)效率也有待進(jìn)一步提高,。因此科學(xué)家們一直致力于尋找新的方法來減少轉(zhuǎn)錄因子的數(shù)量、避免轉(zhuǎn)錄因子的整合并提高的重編程效率,。
10月9日,,Cell Research在線發(fā)表了同濟(jì)大學(xué)和中科院上海藥物所/國(guó)家新藥篩選中心關(guān)于小分子化合物提高iPS誘導(dǎo)效率的最新研究結(jié)果。博士研究生許新秀,、王荃等在篩選化合物時(shí)無意中發(fā)現(xiàn)位于96孔板邊緣的孔中的iPS誘導(dǎo)效率高于中間的孔,。多孔板的邊緣效應(yīng)經(jīng)常可以在高通量篩選體系中觀察到,,主要是因?yàn)檫吘壙椎囊后w蒸發(fā)更強(qiáng),,從而導(dǎo)致邊緣孔的滲透壓提高,pH及營(yíng)養(yǎng)狀況變化,。我們模擬了這幾種情況,,發(fā)現(xiàn)滲透壓的提高可以明顯提高iPS誘導(dǎo)效率。高滲條件能提高四因子誘導(dǎo)效率10倍,,使重編程效率接近25%,。在兩因子(OK, OS)或一因子(O)體系中,高滲條件也能提高誘導(dǎo)效率3~5倍,。高滲能夠激活體細(xì)胞中的三條MAPK(ERK, JNK, p38)通路,,但只有當(dāng)p38的激活被抑制時(shí),,高滲所提高的重編程效率才會(huì)被抑制。利用其他化合物短時(shí)激活p38或過表達(dá)組成性活性的p38均可提高iPS誘導(dǎo)效率,,相反過表達(dá)顯性負(fù)性突變體可抑制重編程效率,。P38的激活被普遍認(rèn)為是促進(jìn)細(xì)胞分化的,為何會(huì)提高重編程效率呢,?進(jìn)一步研究發(fā)現(xiàn)p38的激活可以在整體上降低DNA甲基化程度,,使細(xì)胞處于一種不穩(wěn)定的中間狀態(tài),隨著重編程因子的導(dǎo)入或分化信號(hào)的出現(xiàn),,就可以更容易地被重編程回多能狀態(tài)或分化,。環(huán)境應(yīng)激一直是生物進(jìn)化的有力推動(dòng)因素,我們的研究顯示了在應(yīng)激條件下,,細(xì)胞的表觀遺傳狀態(tài)及基因轉(zhuǎn)錄水平發(fā)生變化,,從而有利于細(xì)胞命運(yùn)的改變。
本研究工作是在謝欣研究員指導(dǎo)下完成,。謝欣研究員是中科院上海藥物研究所課題組長(zhǎng),,國(guó)家新藥篩選中心副主任,同濟(jì)大學(xué)生命科學(xué)與技術(shù)學(xué)院兼職教授,,博士生導(dǎo)師,。主要從事基于GPCR的新藥發(fā)現(xiàn)及機(jī)制研究,以及小分子化合物調(diào)控干細(xì)胞命運(yùn)的研究,。研究組在去年報(bào)道老藥LiCl可以極大提高iPS的誘導(dǎo)效率 (Cell Research, 2011; 21(10):1424-35),。本研究工作得到中科院干細(xì)胞先導(dǎo)專項(xiàng),科技部重大科學(xué)研究計(jì)劃及上海市科委的支持,。(生物谷Bioon.com)
doi: 10.1038/cr.2012.143
PMC:
PMID:
Stress-mediated p38 activation promotes somatic cell reprogramming
Xinxiu Xu, Quan Wang, Yuan Long, Ru Zhang, Xiaoyuan Wei, Mingzhe Xing, Haifeng Gu and Xin Xie
Environmental stress-mediated adaptation plays essential roles in the evolution of life. Cellular adaptation mechanisms usually involve the regulation of chromatin structure, transcription, mRNA stability and translation, which eventually lead to efficient changes in gene expression. Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors. Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming, but also enhances two or one factor-induced iPS cell generation. Hyperosmosis-induced p38 activation plays a critical role in this process. Constitutive active p38 mimics the positive effect of hyperosmosis, while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis. Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes. Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.