2013年2月3日 訊 /生物谷BIOON/ --在最新一期的國際雜志Nature Chemical Biology上,來自盧森堡大學(xué),、天主教魯汶大學(xué)以及佛羅里達(dá)大學(xué)的研究者闡述了一種新的代謝機(jī)制,,名為代謝物損傷控制(metabolite damage-control),研究者表示,,對(duì)于代謝物損傷以及其修復(fù)或者取代,,他們?cè)谖恼轮羞M(jìn)行了深入的解釋,同時(shí)研究者在文章中也討論了細(xì)胞不必要的小分子及其相關(guān)的控制機(jī)制,,并且討論了細(xì)胞質(zhì)量控制對(duì)于細(xì)胞功能和機(jī)體健康的重要性,。
研究者Carole Linster表示,代謝物的損傷控制闡述的是一個(gè)新的概念,,它將我們的觀念從高效酶的線性代謝途徑轉(zhuǎn)移到了更為復(fù)雜的代謝網(wǎng)絡(luò)中,,這種復(fù)雜網(wǎng)絡(luò)將眾多的損傷以及修復(fù)反應(yīng)都考慮了進(jìn)去。研究者希望他們的研究結(jié)果可以帶來細(xì)胞新陳代謝模式的改變,。
構(gòu)成活細(xì)胞的分子都會(huì)不斷地進(jìn)行損傷反應(yīng)并且不斷處理這些損傷,,這對(duì)于細(xì)胞的健康和生存來說至關(guān)重要,自從生命開始,細(xì)胞的損傷控制也就應(yīng)運(yùn)而生了,,而且細(xì)胞的修復(fù)機(jī)制也在根據(jù)生命的進(jìn)化再不斷演替更新著,。
近些年來,許多科學(xué)家重點(diǎn)關(guān)注大分子比如DNA或者蛋白質(zhì)的損傷修復(fù)機(jī)制,,而忽略了小分子,,比如代謝產(chǎn)物的是你上修復(fù)。研究者解釋道,,經(jīng)典生物化學(xué)告訴我們,,只要給酶賦予高效的底物特異性,代謝反應(yīng)就會(huì)高效進(jìn)行,,但是細(xì)胞在代謝過程中仍然會(huì)持續(xù)產(chǎn)生被損傷的代謝產(chǎn)物,,這樣細(xì)胞將不得不清除或者修復(fù)這些損傷的代謝產(chǎn)物。一種代謝產(chǎn)物修復(fù)機(jī)制的缺失將會(huì)引發(fā)個(gè)體致命性的疾病,。
目前“代謝產(chǎn)物損傷控制”研究領(lǐng)域尚處于萌芽時(shí)期,,許多生物化學(xué)研究者也準(zhǔn)備開始研究理解細(xì)胞修復(fù)損傷代謝產(chǎn)物的機(jī)制,這也就意味著未來將會(huì)有很多的細(xì)胞代謝產(chǎn)物損傷修復(fù)系統(tǒng)會(huì)被發(fā)現(xiàn),。研究者Linster說,,我希望看到這篇文章的科學(xué)家肯定我們的研究成果,確定代謝產(chǎn)物修復(fù)是細(xì)胞代謝的一個(gè)重要方面,,這將會(huì)鼓舞我們深入研究發(fā)現(xiàn)更多的機(jī)制,,提高我們對(duì)于細(xì)胞代謝產(chǎn)物損傷控制的理解以及其重要性的理解。(生物谷Bioon.com)
doi:10.1038/nchembio.1141
PMC:
PMID:
Metabolite damage and its repair or pre-emption
Carole L Linster,1 Emile Van Schaftingen2 & Andrew D Hanson3
It is increasingly evident that metabolites suffer various kinds of damage, that such damage happens in all organisms and that cells have dedicated systems for damage repair and containment. First, chemical biology is demonstrating that diverse metabolites are damaged by side reactions of 'promiscuous' enzymes or by spontaneous chemical reactions, that the products are useless or toxic and that the unchecked buildup of these products can be devastating. Second, genetic and genomic evidence from prokaryotes and eukaryotes is implicating a network of new, conserved enzymes that repair damaged metabolites or somehow pre-empt damage. Metabolite (that is, small-molecule) repair is analogous to macromolecule (DNA and protein) repair and seems from comparative genomic evidence to be equally widespread. Comparative genomics also implies that metabolite repair could be the function of many conserved protein families lacking known activities. How—and how well—cells deal with metabolite damage affects fields ranging from medical genetics to metabolic engineering.