據(jù)每日科學(xué)網(wǎng)近日?qǐng)?bào)道,,曼徹斯特大學(xué)科學(xué)家在研究蝌蚪如何再生尾巴時(shí)驚奇地發(fā)現(xiàn),,通常被認(rèn)為對(duì)細(xì)胞有害的活性氧簇(ROS)在再生過程中發(fā)揮了積極影響,,這對(duì)于研究人類創(chuàng)傷的愈合和再生具有重要意義,。該研究成果發(fā)表在《自然—細(xì)胞生物學(xué)》(Nature Cell Biology)雜志上,。
與包括人類在內(nèi)的哺乳動(dòng)物相比,,青蛙和蠑螈擁有非凡的再生能力,如果一只蝌蚪失去了它的尾巴,,在一周之內(nèi)就會(huì)再生出一個(gè)新的尾巴,。曼徹斯特大學(xué)生命科學(xué)學(xué)院愈合基礎(chǔ)中心的恩里克·阿馬亞和他的研究團(tuán)隊(duì)多年來一直試圖更好地了解這一再生過程。
通過早期研究他們確定,,在蝌蚪尾巴再生的過程中,,一些參與新陳代謝的基因、特別是與生產(chǎn)活性氧簇有關(guān)的基因被激活了,。然而,,活性氧簇一直被認(rèn)為對(duì)細(xì)胞有負(fù)面影響。
阿馬亞決定對(duì)此意外發(fā)現(xiàn)進(jìn)行深入研究,。他們利用熒光分子成像技術(shù)來測(cè)量過氧化氫(細(xì)胞中的一種常見的活性氧簇)的含量,,結(jié)果發(fā)現(xiàn),在斷尾后以及持續(xù)數(shù)天的尾巴再生過程中,,過氧化氫的含量出現(xiàn)顯著增加,。
為了評(píng)估活性氧簇在再生過程中的重要性,研究人員采用兩種方法來限制活性氧簇的生產(chǎn):其一是使用化學(xué)物質(zhì),,包括一種抗氧化劑,;其二是刪除一個(gè)負(fù)責(zé)活性氧簇生產(chǎn)的基因。在這兩種情況下,,再生過程都受到了抑制,,蝌蚪的尾巴無法重生。
阿馬亞說:“當(dāng)我們降低活性氧簇的水平時(shí),,組織就無法生長(zhǎng)和再生,。我們的研究表明,活性氧簇對(duì)于啟動(dòng)和維持再生反應(yīng)而言必不可少,。我們還發(fā)現(xiàn),,活性氧簇對(duì)于激活Wnt信號(hào)通路也至關(guān)重要,該信號(hào)通路基本上與每一個(gè)被研究過的再生系統(tǒng)(包括人類的)有關(guān),。”
阿馬亞還說:“研究也顯示,,抗氧化劑對(duì)于組織再生有負(fù)面影響,而我們卻經(jīng)常被告知抗氧化劑應(yīng)該有利于健康,。”就在這項(xiàng)研究結(jié)果公布的前幾天,,諾貝爾獎(jiǎng)得主詹姆斯·沃森發(fā)表的論文認(rèn)為,抗氧化劑可能對(duì)癌癥晚期病人有害,。對(duì)此阿馬亞評(píng)論說:“最近的兩篇論文表明抗氧化劑并不總是有益的,,這一點(diǎn)非常有意思。事實(shí)上,,如活性氧簇之類的氧化劑,,可能在創(chuàng)傷愈合和再生方面發(fā)揮了重要的有益作用,。”
接下來,阿馬亞的團(tuán)隊(duì)將進(jìn)一步加深對(duì)活性氧簇的認(rèn)識(shí),,并希望在此基礎(chǔ)上開展人類研究,以確定提高人體內(nèi)活性氧簇的水平是否能夠增強(qiáng)我們的創(chuàng)傷愈合和組織再生能力,。(生物谷Bioon.com)
doi:10.1038/ncb2659
PMC:
PMID:
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
Nick R. Love, Yaoyao Chen, Shoko Ishibashi, Paraskevi Kritsiligkou, Robert Lea
Understanding the molecular mechanisms that promote successful tissue regeneration is critical for continued advancements in regenerative medicine. Vertebrate amphibian tadpoles of the species Xenopus laevis and Xenopus tropicalis have remarkable abilities to regenerate their tails following amputation1, 2, through the coordinated activity of numerous growth factor signalling pathways, including the Wnt, Fgf, Bmp, Notch and TGF-β pathways3, 4, 5, 6. Little is known, however, about the events that act upstream of these signalling pathways following injury. Here, we show that Xenopus tadpole tail amputation induces a sustained production of reactive oxygen species (ROS) during tail regeneration. Lowering ROS levels, using pharmacological or genetic approaches, reduces the level of cell proliferation and impairs tail regeneration. Genetic rescue experiments restored both ROS production and the initiation of the regenerative response. Sustained increased ROS levels are required for Wnt/β-catenin signalling and the activation of one of its main downstream targets, fgf20 (ref. 7), which, in turn, is essential for proper tail regeneration. These findings demonstrate that injury-induced ROS production is an important regulator of tissue regeneration.