據(jù)英國《每日電訊報》7月16日報道,,美國科學(xué)家使用人體誘導(dǎo)多能干細胞(iPS細胞)制造出了能在實驗鼠體內(nèi)存活280天的人造血管,。發(fā)表在最新一期美國《國家科學(xué)院學(xué)報》上的這項研究成果有助于開發(fā)出新的心臟病和糖尿病療法,。
麻省總醫(yī)院的研究團隊使用人體iPS細胞制造出了血管前體細胞,,然后將這些前體細胞移植到實驗鼠大腦的表面,。兩周后,,這種前體細胞變成了功能性的血管,,而且持續(xù)工作了280天,。在這段時間內(nèi),這些人造血管的表現(xiàn)同實驗鼠天生的血管毫無二致,。
科學(xué)家們認為,,能夠修復(fù)或培育出新的血管有望成為心臟病和糖尿病新療法的基礎(chǔ)。
此前,,也有科學(xué)家使用同樣的方法來制造人造血管,,但卻無法保證在移植入動物體內(nèi)后可以長時間起作用。另外,,該研究論文的主要作者,、麻省總醫(yī)院的瑞凱士·金恩表示,將同樣的細胞移植于皮膚下也可以制造出血管,,但這種血管壽命更短,,而且需要的前體細胞要多4倍。相對而言,新方法更方便快捷,。
金恩認為,,干細胞技術(shù)已經(jīng)給基于細胞的再生醫(yī)學(xué)領(lǐng)域帶來了巨大活力,但是用iPS細胞制造出功能性的細胞仍然面臨諸多挑戰(zhàn),。
總編輯圈點
盡管前路坎坷,但“萬能細胞”帶來的福祉似已越來越近,。2012年,,日本名古屋大學(xué)醫(yī)學(xué)系曾從高齡老鼠身上提取iPS細胞用于再造血管,其改善血液循環(huán)等方面的作用在觀察中得到認可,。而今,,以人體iPS細胞制造的血管已能在實驗鼠體內(nèi)工作長達九個多月,這項技術(shù)如能切實運用于人體,,對腦梗塞,、動脈硬化及糖尿病患者的巨大意義,值得所有付出過的努力,。(生物谷 Bioon.com)
生物谷推薦的英文摘要
PNAS doi: 10.1073/pnas.1310675110
Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells
Rekha Samuela,1,2, Laurence Daheronb,2, Shan Liaoa,2, Trupti Vardama,2, Walid S. Kamouna, Ana Batistaa, Christa Bueckerb,3, Richard Schäferb,3, Xiaoxing Hana, Patrick Aua,4, David T. Scaddenc, Dan G. Dudaa, Dai Fukumuraa,5, and Rakesh K. Jaina,5
Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers—CD34, neuropilin 1, and human kinase insert domain-containing receptor—and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.