生物谷報道:北京大學物理學院和理論生物學中心歐陽頎教授課題組,、國家納米科學中心,、中科院化學所的合作研究成果目前發(fā)表在6月號的《自然.納米技術》上(Youdong Mao, Song Chang, Shaoxuan Yang, Qi Ouyang, Lei Jiang. Tunnable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Nature Nanotechnology, 2, 366-371, 2007)。該論文在國際上首次研究了DNA納米軟通道的非平衡開關(Nonequilibrium gating)的基本物理性質,,也是《自然 . 納米技術》自2006年10月創(chuàng)刊以來,,所發(fā)表原始研究論文中第一篇來自中國(包括香港和臺灣)的論文。
生物納米通道在生命的分子細胞過程中起著至關重要的作用,,如生物能量轉換,,神經細胞膜電位的調控,細胞間的通信和信號轉導等等,。北京大學物理學院和理論生物學中心,,國家納米科學中心、中科院化學所得相關人員從實驗和理論等多角度研究了DNA納米軟通道的開關性質,。他們關于DNA納米艙的前期工作曾連續(xù)發(fā)表在國際知名雜志《核酸研究》上(Y. Mao, et al. Nucleic Acids Res. 31, e108 (2003); 32, e144 (2004); 35, e33 (2007)),,其中2004年的《核酸研究》論文是國際上公認最早研究DNA納米艙的工作。在該《自然 . 納米技術》論文中,,他們發(fā)現(xiàn)由于DNA通道的柔軟性(Flexibility),使其開關直接受到通道內輸運粒子產生的壓力的調控,,表現(xiàn)出類似于齒輪機制(Ratchet mechanism)的動力學行為,。他們從基本的朗之萬方程(Langevin equation)和福克-普蘭克方程(Fokker-Plank equation)等非平衡統(tǒng)計物理學原理出發(fā),,以描述納米軟通道和輸運粒子相互作用為切入點,,構造了一套理論模型,首次提出并解決了DNA納米軟通道和輸運粒子耦合動力學行為,?;谠摾碚摰挠嬎銠C模擬進一步再現(xiàn)了他們關于DNA納米通道開關的一系列實驗觀測。
《自然 . 納米技術》是《自然》新推出的月刊,,其目的是發(fā)表來自國際納米科學和納米技術全部領域的高品質的原始研究論文,。(北京大學)
原始出處:
Nature Nanotechnology 2, 366 - 371 (2007)
Published online: 27 May 2007 | doi:10.1038/nnano.2007.148
Subject Categories: Nanobiotechnology | Nanosensors and other devices
Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux
Youdong Mao1,2, Song Chang1, Shaoxuan Yang1, Qi Ouyang1 & Lei Jiang3
Abstract
Biological nanochannels made from proteins play a central role in cellular signalling1, 2, 3, 4, 5, 6, 7, 8, 9. The rapid emergence of DNA nanotechnology in recent years10, 11, 12, 13 has opened up the possibility of making similar nanochannels from DNA. Building on previous work on switchable DNA nanocompartment14, 15, we have constructed complex DNA nanosystems to investigate the gating behaviour of these nanochannels. Here we show that DNA nanochannels can be gated by stress exerted by permeating solute particles at non-equilibrium states due to the high flexibility of the nanochannels. This novel gating mechanism results in tunable ratchet-like transport of solute particles through the nanochannels. A simple model that couples non-equilibrium channel gating with transport flux can quantitatively explain a number of the phenomena we observe. With only one set of model parameters, we can reproduce diverse gating behaviours, modulated by an inherent gating threshold. This work could lead to the development of new devices based on DNA nanochannels.