生物谷報(bào)道:來自美國(guó)范德比特大學(xué)(Vanderbilt University,,生物谷注)生命科學(xué)系,,英國(guó)醫(yī)學(xué)研究國(guó)立研究院(National Institute for Medical Research)的研究人員首次證明利用一種新型的基因治療的方法:RNA干擾(RNAi)能在一個(gè)活體動(dòng)物中治愈一種遺傳失序癥(genetic disorder,生物谷注),。這一研究成果公布在Endocrinology雜志上,。
(圖片說明:James Patton在展示一個(gè)瘦小的轉(zhuǎn)基因小鼠和它受治愈的后代)
這項(xiàng)研究說明RNAi能治愈經(jīng)過遺傳工程改造的,表達(dá)一種缺陷型人類激素(干擾正常生長(zhǎng))的小鼠,,當(dāng)將表達(dá)缺陷型人類生長(zhǎng)激素的基因插入到小鼠基因組中的時(shí)候,,小鼠的生長(zhǎng)會(huì)受到阻礙,但是當(dāng)用一種小片段RNA干擾激素的生成,,那么小鼠就能恢復(fù)正常,。
來自范德比特大學(xué)醫(yī)學(xué)中心的John Phillips教授表示,“這已經(jīng)充分的闡述了這種遺傳失序癥的原因機(jī)理,,并得到了一種治療的方法”,,Phillips教授自1987年就開始研究人類生長(zhǎng)缺陷失序癥,他與James G. Patton教授,,以及兩位研究生Nikki Shariat和Robin Ryther共同發(fā)表了這一重要的成果,。
生長(zhǎng)激素缺乏癥(Growth Hormone Deficiency,GHD,,生物谷注)又稱垂體性佚儒癥(Pitu-itary dwarfism),。垂體前葉分泌生長(zhǎng)激素、促腎上腺皮質(zhì)激素,、促甲狀腺激素和促性腺激素維持人體正常內(nèi)分泌功能,。如因垂體前葉分泌的生長(zhǎng)激素不足,則導(dǎo)致生長(zhǎng)激素缺乏癥,。其主要臨床表現(xiàn)為生長(zhǎng)障礙,。部分患兒伴有性腺、甲狀腺和腎上腺皮質(zhì)功能低下,。
GHD在每4000-10000個(gè)兒童中就會(huì)出現(xiàn)一例,,發(fā)病原理有許多,其中一種遺傳性的稱為孤立性生長(zhǎng)激素缺乏Ⅱ型遺傳病(familial isolated growth hormone deficiency type II,,IGHD II,,生物谷注),能引起dominant negative disorder,。這是由于人類生長(zhǎng)激素的一種缺陷形式引起的,,其它常見的dominant negative disorder包括結(jié)腸癌,腎臟疾病,,肌肉萎縮癥等,。
RNA沉默是存在于生物中的一種古老現(xiàn)象, 是生物抵抗異常DNA(病毒、轉(zhuǎn)座因子和某些高重復(fù)的基因組序列)的保護(hù)機(jī)制, 同時(shí)在生物發(fā)育過程中扮演著基因表達(dá)調(diào)控的角色,,它可以通過降解RNA,、抑制翻譯或修飾染色體等方式發(fā)揮作用。
正常的生長(zhǎng)激素是由一系列外顯子表達(dá)的(5個(gè)外顯子),,而在缺陷型激素則發(fā)生了一個(gè)剪接錯(cuò)誤:頭兩個(gè)外顯子片段和最后兩個(gè)外顯子片段拼接在了一起,,漏了第三個(gè)外顯子。
Patton表示,,“一個(gè)正常的人中這種缺陷激素含量很少——大約只有1%,,但是IGHD-II家族成員能產(chǎn)生10%-20%,甚至50%的這種激素,,產(chǎn)生的越多,,他們生長(zhǎng)的越緩慢。”
在2003年,,這一文章的合作作者Iain Robinson獲得了帶有人類生長(zhǎng)激素基因的轉(zhuǎn)基因小鼠,,雖然經(jīng)改造的小鼠依然具有小鼠生長(zhǎng)激素基因,但是研究人員發(fā)現(xiàn),,缺陷型人類生長(zhǎng)激素的高水平表達(dá)不僅導(dǎo)致其生長(zhǎng)緩慢,,而且會(huì)殺死產(chǎn)生生長(zhǎng)激素的腦垂體細(xì)胞。
原始出處:
Endocrinology, doi:10.1210/en.2007-1360
Submitted on October 2, 2007
Accepted on November 6, 2007
Rescue of Pituitary Function in a Mouse Model of Isolated Growth Hormone Deficiency Type II by RNAi
Nikki Shariat, Robin C.C. Ryther, John A. Phillips III, Iain C.A.F. Robinson, and James G. Patton*
Department of Biological Sciences; Department of Pediatrics, Vanderbilt University, Nashville, TN 37235 USA; MRC, National Institute for Medical Research, Mill Hill, London, NW7 1AA UK
* To whom correspondence should be addressed. E-mail: [email protected] .
Splicing mutations in the human growth hormone (hGH) gene (GH-1) that cause skipping of exon 3 result in a form of GH deficiency termed Isolated Growth Hormone Deficiency type II (IGHD II). The GH-1 gene contains 5 exons; constitutive splicing produces the wild type 22kDa hormone while skipping of exon 3 results in transcripts encoding a 17.5 kDa isoform that acts as a dominant negative to block secretion of the wild type hormone. Common characteristics of IGHD II include short stature due to impaired bone elongation growth and, in severe cases, anterior pituitary hypoplasia. Typically, IGHD II is treated by subcutaneous delivery of hGH which can rescue stature but, unfortunately, does not inhibit pituitary hypoplasia. Direct destruction of transcripts encoding the dominant negative 17.5 kDa isoform should both rescue stature and prevent hypoplasia. Here, we have used delivery of short hairpin RNAs (shRNAs) to rescue a murine model of IGHD II by specifically targeting transcripts encoding the 17.5 kDa isoform using RNA interference. To our knowledge, this is the first example where an shRNA has been expressed to specifically degrade an incorrectly spliced transcript and rescue a dominant negative disease phenotype in vivo.
Key words: Growth hormone (GH) • RNA interference • Isolated GH Deficiency type II