復旦大學科學家在納米馬達研究中獲重要進展,。以王志松教授為負責人的復旦大學現(xiàn)代物理研究所分子納米研究組發(fā)現(xiàn)了納米馬達自主運動的分子機制,,為發(fā)展一大類性能先進的新型納米馬達打開了通路,。近日,,相關(guān)研究成果發(fā)表在《美國國家科學院院刊》上。
近半個世紀前,,著名物理學家費曼提出了實現(xiàn)類似汽車的納米馬達的可能性,。從2004年開始,科學家終于制備出沿長軌道進行定向運輸?shù)募{米馬達,。目前所實現(xiàn)的馬達,,一般有兩個類似“足”的部件,前后的足部件采用不同的化學成分,,以此來取定方向,。這就像我們?nèi)粘J煜さ娜湎x,它沿著樹枝爬動,,只有頭尾分明,,它才能取定方向。但是,,不同的足部件帶來馬達合成上的困難,。而且必須有幾種不同的化學分子為馬達提供能量,因此馬達運行一般需要復雜的操作,。
“其實,,我們?nèi)梭w細胞內(nèi)也存在著類似的雙足納米馬達,,他們由蛋白質(zhì)分子構(gòu)成。”有關(guān)專家解釋說,,這些蛋白質(zhì)(生物)馬達常常雙足相同,,而且只消耗單一種類的燃料分子(ATP,即三磷酸腺苷),。它們卻能自己選擇方向,,完全以自主方式運動,只要環(huán)境中存在ATP分子就行了,。因此,,生物馬達的定向方法遠比目前的人工納米馬達先進。而最終實現(xiàn)可以和生物馬達相媲美的人工馬達是納米科技的一個夢想目標,。
復旦大學教授,、留德歸國博士王志松所領(lǐng)導的研究小組最近發(fā)現(xiàn)了同頭尾的納米馬達自主定向、自主運動的分子機制,,為發(fā)展性能先進的新型納米馬達打開了通路,。他們的研究論文題為Synergic Mechanism And Fabrication Target for Bipedal Nanomotors。
復旦大學研究組的最新發(fā)現(xiàn)把納米馬達的運行要求降到了最低水平,,即只須隨機給它提供單一種類的燃料分子,。而馬達自己決定是否接受能量供應,自己選定方向,,自己協(xié)調(diào)頭尾使其彼此交替跨越,,從而實現(xiàn)沿軌道的定向運輸。而制備這些性能優(yōu)越的新型納米馬達,,只需合成單個頭部件,,再由全同的頭部件兩兩連接即可,難度大大降低,。王志松研究組的后續(xù)研究發(fā)現(xiàn),,這種先進的納米馬達機制在生物馬達中也存在,而且是充分優(yōu)化的,。因此,,他們所發(fā)現(xiàn)的馬達機制可能是經(jīng)過長期生物進化所選擇的一個最佳途徑,對人工納米馬達的研制將具有普遍指導意義,。
復旦大學納米馬達研究組過去在納米馬達的激光控制等方面也獲得了一系列重要成果,,先后受到美國物理研究院物理研究新聞、麻省理工學院技術(shù)評論雜志,、美國光子譜雜志的專題報道,。
他們的研究工作得到了國家自然科學基金、上海市浦江計劃,、上海教育基金會曙光計劃和教育部新世紀優(yōu)秀人才計劃的資助,。(科學時報)
原始出處:
Published online before print November 6, 2007, 10.1073/pnas.0703639104
PNAS | November 13, 2007 | vol. 104 | no. 46 | 17921-17926
Synergic mechanism and fabrication target for bipedal nanomotors
Zhisong Wang*
Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Han-Dan Road 220, Shanghai 200433, China
Edited by R. Dean Astumian, University of Maine, Orono, ME, and accepted by the Editorial Board October 2, 2007 (received for review April 19, 2007)
Inspired by the discovery of dimeric motor proteins capable of undergoing transportation in living cells, significant efforts have been expended recently to the fabrication of track-walking nanomotors possessing two foot-like components that each can bind or detach from an array of anchorage groups on the track in response to local events of reagent consumption. The central problem in fabricating bipedal nanomotors is how the motor as a whole can gain the synergic capacity of directional track-walking, given the fact that each pedal component alone often is incapable of any directional drift. Implemented bipedal motors to date solve this thermodynamically intricate problem by an intuitive strategy that requires a hetero-pedal motor, multiple anchorage species for the track, and multiple reagent species for motor operation. Here we performed realistic molecular mechanics calculations on molecule-scale models to identify a detailed molecular mechanism by which motor-level directionality arises from a homo-pedal motor along a minimally heterogeneous track. Optimally, the operation may be reduced to a random supply of a single species of reagents to allow the motor's autonomous functioning. The mechanism suggests a distinct class of fabrication targets of drastically reduced system requirements. Intriguingly, a defective form of the mechanism falls into the realm of the well known Brownian motor mechanism, yet distinct features emerge from the normal working of the mechanism.
molecular devices | molecular mechanics theory | nanotechnology | Brownian motor