復(fù)旦大學(xué)科學(xué)家在納米馬達(dá)研究中獲重要進(jìn)展。以王志松教授為負(fù)責(zé)人的復(fù)旦大學(xué)現(xiàn)代物理研究所分子納米研究組發(fā)現(xiàn)了納米馬達(dá)自主運(yùn)動(dòng)的分子機(jī)制,,為發(fā)展一大類性能先進(jìn)的新型納米馬達(dá)打開(kāi)了通路,。近日,,相關(guān)研究成果發(fā)表在《美國(guó)國(guó)家科學(xué)院院刊》上,。
近半個(gè)世紀(jì)前,著名物理學(xué)家費(fèi)曼提出了實(shí)現(xiàn)類似汽車的納米馬達(dá)的可能性,。從2004年開(kāi)始,,科學(xué)家終于制備出沿長(zhǎng)軌道進(jìn)行定向運(yùn)輸?shù)募{米馬達(dá)。目前所實(shí)現(xiàn)的馬達(dá),,一般有兩個(gè)類似“足”的部件,,前后的足部件采用不同的化學(xué)成分,以此來(lái)取定方向,。這就像我們?nèi)粘J煜さ娜湎x(chóng),,它沿著樹(shù)枝爬動(dòng),只有頭尾分明,,它才能取定方向,。但是,不同的足部件帶來(lái)馬達(dá)合成上的困難,。而且必須有幾種不同的化學(xué)分子為馬達(dá)提供能量,,因此馬達(dá)運(yùn)行一般需要復(fù)雜的操作。
“其實(shí),,我們?nèi)梭w細(xì)胞內(nèi)也存在著類似的雙足納米馬達(dá),,他們由蛋白質(zhì)分子構(gòu)成。”有關(guān)專家解釋說(shuō),,這些蛋白質(zhì)(生物)馬達(dá)常常雙足相同,,而且只消耗單一種類的燃料分子(ATP,即三磷酸腺苷),。它們卻能自己選擇方向,,完全以自主方式運(yùn)動(dòng),只要環(huán)境中存在ATP分子就行了,。因此,,生物馬達(dá)的定向方法遠(yuǎn)比目前的人工納米馬達(dá)先進(jìn)。而最終實(shí)現(xiàn)可以和生物馬達(dá)相媲美的人工馬達(dá)是納米科技的一個(gè)夢(mèng)想目標(biāo),。
復(fù)旦大學(xué)教授,、留德歸國(guó)博士王志松所領(lǐng)導(dǎo)的研究小組最近發(fā)現(xiàn)了同頭尾的納米馬達(dá)自主定向,、自主運(yùn)動(dòng)的分子機(jī)制,為發(fā)展性能先進(jìn)的新型納米馬達(dá)打開(kāi)了通路,。他們的研究論文題為Synergic Mechanism And Fabrication Target for Bipedal Nanomotors,。
復(fù)旦大學(xué)研究組的最新發(fā)現(xiàn)把納米馬達(dá)的運(yùn)行要求降到了最低水平,即只須隨機(jī)給它提供單一種類的燃料分子,。而馬達(dá)自己決定是否接受能量供應(yīng),,自己選定方向,,自己協(xié)調(diào)頭尾使其彼此交替跨越,,從而實(shí)現(xiàn)沿軌道的定向運(yùn)輸。而制備這些性能優(yōu)越的新型納米馬達(dá),,只需合成單個(gè)頭部件,,再由全同的頭部件兩兩連接即可,難度大大降低,。王志松研究組的后續(xù)研究發(fā)現(xiàn),,這種先進(jìn)的納米馬達(dá)機(jī)制在生物馬達(dá)中也存在,而且是充分優(yōu)化的,。因此,,他們所發(fā)現(xiàn)的馬達(dá)機(jī)制可能是經(jīng)過(guò)長(zhǎng)期生物進(jìn)化所選擇的一個(gè)最佳途徑,對(duì)人工納米馬達(dá)的研制將具有普遍指導(dǎo)意義,。
復(fù)旦大學(xué)納米馬達(dá)研究組過(guò)去在納米馬達(dá)的激光控制等方面也獲得了一系列重要成果,,先后受到美國(guó)物理研究院物理研究新聞、麻省理工學(xué)院技術(shù)評(píng)論雜志,、美國(guó)光子譜雜志的專題報(bào)道,。
他們的研究工作得到了國(guó)家自然科學(xué)基金、上海市浦江計(jì)劃,、上海教育基金會(huì)曙光計(jì)劃和教育部新世紀(jì)優(yōu)秀人才計(jì)劃的資助,。(科學(xué)時(shí)報(bào))
原始出處:
Published online before print November 6, 2007, 10.1073/pnas.0703639104
PNAS | November 13, 2007 | vol. 104 | no. 46 | 17921-17926
Synergic mechanism and fabrication target for bipedal nanomotors
Zhisong Wang*
Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Han-Dan Road 220, Shanghai 200433, China
Edited by R. Dean Astumian, University of Maine, Orono, ME, and accepted by the Editorial Board October 2, 2007 (received for review April 19, 2007)
Inspired by the discovery of dimeric motor proteins capable of undergoing transportation in living cells, significant efforts have been expended recently to the fabrication of track-walking nanomotors possessing two foot-like components that each can bind or detach from an array of anchorage groups on the track in response to local events of reagent consumption. The central problem in fabricating bipedal nanomotors is how the motor as a whole can gain the synergic capacity of directional track-walking, given the fact that each pedal component alone often is incapable of any directional drift. Implemented bipedal motors to date solve this thermodynamically intricate problem by an intuitive strategy that requires a hetero-pedal motor, multiple anchorage species for the track, and multiple reagent species for motor operation. Here we performed realistic molecular mechanics calculations on molecule-scale models to identify a detailed molecular mechanism by which motor-level directionality arises from a homo-pedal motor along a minimally heterogeneous track. Optimally, the operation may be reduced to a random supply of a single species of reagents to allow the motor's autonomous functioning. The mechanism suggests a distinct class of fabrication targets of drastically reduced system requirements. Intriguingly, a defective form of the mechanism falls into the realm of the well known Brownian motor mechanism, yet distinct features emerge from the normal working of the mechanism.
molecular devices | molecular mechanics theory | nanotechnology | Brownian motor