封面圖片:含有氮雜嘌呤的化合物廣泛存在,它們由多種鏈霉菌產生,。封面圖片描繪了龜裂鏈霉菌中兩種氮雜嘌呤類物質——桑吉瓦霉素和豐加霉素的生物合成路徑,。圖中的放大鏡突出強調了合成途徑中已經過生化測試證實的一些步驟,。圖片提供:Cheryl L. Ryan)
吡咯并嘧啶(pyrrolopyrimidine)核苷類似物一般被稱為氮雜嘌呤-deazapurine,,這是一類結構上變化多種多樣的重要物質,它們在各種生態(tài)位中都廣泛存在,。在2008年8月25日出版的《化學與生物學》(Chemistry & Biology)上,,來自美國亞利桑那大學的McCarty以及Bandarian發(fā)表了他們的最新研究結果。文章稱,,作者發(fā)現(xiàn)了龜裂鏈霉菌(Streptomyces rimosus)中存在一簇基因,,這一基因簇和氮雜嘌呤抗生素——桑吉瓦霉素(sangivamycin)以及豐加霉素(toyocamycin)的產生有關。
在文章中研究人員還確定,,這一基因簇中包含豐加霉素腈水合酶(toyocamycin nitrile hydratase),,這是一種催化豐加霉素向桑吉瓦霉素轉化的酶。除了這種罕見的腈水合酶之外,,基因簇還編譯產生一種GTP環(huán)水解酶I(GTP cyclohydrolase I),,從而將氮雜嘌呤的生物合成與葉酸的生物合成聯(lián)系起來?;虼刂羞€有一組嘌呤生物合成基因,,它們能將GTP中的鳥嘌呤部分轉化為類似腺嘌呤的氮雜嘌呤堿基,這類堿基存在于桑吉瓦霉素和豐加霉素當中,。
科學家認為,,他們發(fā)現(xiàn)的這一基因簇或許能幫助研究人員確認其它細菌種類當中的氮雜嘌呤生物合成途徑。因此,,以上研究結果為進一步研究含有氮雜嘌呤物質的次級代謝產物的生物合成過程,,以及內在的化學變化提供了可能。(生物谷Bioon.com)
生物谷推薦原始出處:
Chemistry & Biology,,Vol 15, 790-798, 25 August 2008,,Reid M. McCarty and Vahe Bandarian
Deciphering Deazapurine Biosynthesis: Pathway for Pyrrolopyrimidine Nucleosides Toyocamycin and Sangivamycin
Reid M. McCarty1 and Vahe Bandarian1,2
1 Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
2 Department of Chemistry, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
Pyrrolopyrimidine nucleosides analogs, collectively referred to as deazapurines, are an important class of structurally diverse compounds found in a wide variety of biological niches. In this report, a cluster of genes from Streptomyces rimosus (ATCC 14673) involved in production of the deazapurine antibiotics sangivamycin and toyocamycin was identified. The cluster includes toyocamycin nitrile hydratase, an enzyme that catalyzes the conversion of toyocamycin to sangivamycin. In addition to this rare nitrile hydratase, the cluster encodes a GTP cyclohydrolase I, linking the biosynthesis of deazapurines to folate biosynthesis, and a set of purine salvage/biosynthesis genes, which presumably convert the guanine moiety from GTP to the adenine-like deazapurine base found in toyocamycin and sangivamycin. The gene cluster presented here could potentially serve as a model to allow identification of deazapurine biosynthetic pathways in other bacterial species.