研究人員將野生植物中的一種基因移植到病害風(fēng)險(xiǎn)大的西紅柿和土豆中,,結(jié)果增加了這些植物抵抗農(nóng)業(yè)病菌的能力,。新成果發(fā)表在3月在線出版的《自然—生物技術(shù)》期刊上,如果這一結(jié)果能廣泛地復(fù)制,,那么它將在減少作物大量損失的同時(shí),避免殺蟲劑使用所造成的環(huán)境、健康和成本問題,。
絕大多數(shù)植物都擁有對付微生物病菌侵犯的普通和特別兩種機(jī)制。然而,,抵抗特別病菌的能力卻因不同種類的植物而異,。創(chuàng)建作物抗病毒能力的方法之一是讓它們表達(dá)出特定的受體,在被某種病害的分子所激發(fā)時(shí)能作出防御反應(yīng)。但是,,這種抵抗能力卻在大范圍的田野試驗(yàn)中消失,,因?yàn)槁斆鞯牟【鷷?huì)突破這道防線,進(jìn)入植物體內(nèi),。
Cyril Zipfel和同事將目標(biāo)集中到一種免疫受體,,這是一種來自野生芥菜的模式受體,會(huì)被出現(xiàn)在許多致病菌中的一種因子所激活,。然而,,科學(xué)家們卻沒有在土豆、西紅柿等植物家族中發(fā)現(xiàn)這種受體,。當(dāng)Zipfel和同事在西紅柿和相近的煙草植物中表達(dá)出這種基因時(shí),,這些植物對來自于四種不同家族的病菌有了更高的抵抗力,這四種病菌分別會(huì)導(dǎo)致細(xì)菌性萎蔫病,、細(xì)菌性斑點(diǎn),、冠癭病等。因?yàn)槟J阶R別受體靶標(biāo)法是病菌生存的關(guān)鍵,,所以新方法讓細(xì)菌難以避開植物的抵抗能力,。
未來還需要進(jìn)一步的田野試驗(yàn),以檢驗(yàn)?zāi)J阶R別受體戰(zhàn)略是否能提供比目前方法高兩倍的植物抵抗力,。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature Biotechnology doi:10.1038/nbt.1613
Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance
Séverine Lacombe1,5,6, Alejandra Rougon-Cardoso1,5,6, Emma Sherwood1,5,6, Nemo Peeters2, Douglas Dahlbeck3, H Peter van Esse4, Matthew Smoker1, Ghanasyam Rallapalli1, Bart P H J Thomma4, Brian Staskawicz3, Jonathan D G Jones1 & Cyril Zipfel1
Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs)1, 2, 3. Although the overall importance of PAMP-triggered immunity for plant defense is established2, 3, it has not been used to confer disease resistance in crops. We report that activity of a PRR is retained after its transfer between two plant families. Expression of EFR (ref. 4), a PRR from the cruciferous plant Arabidopsis thaliana, confers responsiveness to bacterial elongation factor Tu in the solanaceous plants Nicotiana benthamiana and tomato (Solanum lycopersicum), making them more resistant to a range of phytopathogenic bacteria from different genera. Our results in controlled laboratory conditions suggest that heterologous expression of PAMP recognition systems could be used to engineer broad-spectrum disease resistance to important bacterial pathogens, potentially enabling more durable and sustainable resistance in the field.