小核糖核酸(miRNAs,,又稱小RNA)通常被認(rèn)為具有很長的半衰期,。然而,瑞士科學(xué)家日前發(fā)現(xiàn),,在小鼠的視網(wǎng)膜中,,為了響應(yīng)黑暗與光亮的影響,特定miRNA的水平能夠迅速作出改變——這應(yīng)該歸因于高速的衰減與轉(zhuǎn)錄,。此外,,他們指出,,高轉(zhuǎn)變率可能是許多神經(jīng)細(xì)胞miRNA的一個普遍特性,。
視網(wǎng)膜的敏感性能夠適應(yīng)光線水平的變化,然而科學(xué)家對于其背后的運(yùn)行機(jī)制,,以及這種適應(yīng)對光感受器的分子機(jī)制構(gòu)成的影響卻一直缺乏全面的了解,;瑞士巴塞爾市Friedrich Miescher生物醫(yī)學(xué)研究所的Jacek Krol等人于是研究了miRNA是否與此有關(guān)。通過對采自小鼠的視網(wǎng)膜——能夠適應(yīng)明亮或黑暗的環(huán)境——進(jìn)行深度測序和微陣列技術(shù)分析,,研究人員鑒別出了小鼠視網(wǎng)膜中表達(dá)的253種miRNA,。由光線誘導(dǎo)的miRNA包括miR-204和miR-211,它們在視網(wǎng)膜的內(nèi)核層被高度地表達(dá),,而miR-183/96/182則在光感受器中有高度表達(dá),。
這些miRNA的水平能夠迅速變化——它們在小鼠被移到暗處后的90分鐘內(nèi)達(dá)到最低值,而在小鼠重新回到陽光下的30分鐘后又達(dá)到最高值,。研究人員通過藥理學(xué)抑制轉(zhuǎn)錄防止了由光線引發(fā)的miRNA水平的增加,。有趣的是,在轉(zhuǎn)錄被抑制后,,幾種非光線調(diào)節(jié)的miRNA的水平也迅速降低,,這意味著即便不是全部,快速miRNA轉(zhuǎn)變也能夠適用于大多數(shù)的視網(wǎng)膜miRNA。
這啟發(fā)研究人員開始思考是否非視網(wǎng)膜的神經(jīng)細(xì)胞也具有這種快速的miRNA轉(zhuǎn)變的能力,。在研究過程中,,大多數(shù)——盡管不是全部——在生物體外培育的海馬回和大腦皮質(zhì)神經(jīng)細(xì)胞中的miRNA表現(xiàn)出了高度的轉(zhuǎn)變能力,但是在神經(jīng)膠質(zhì)中表達(dá)的miRNA卻不具備這樣的特性,。此外,,在分化的神經(jīng)細(xì)胞中,對轉(zhuǎn)錄的藥理學(xué)抑制顯示了miRNA的迅速衰減,,但在胚胎干細(xì)胞或神經(jīng)祖細(xì)胞中則沒有出現(xiàn)這種情況,。總體來看,,這些數(shù)據(jù)表明,,與其他細(xì)胞類型中的miRNA相比,神經(jīng)細(xì)胞的miRNA經(jīng)歷了更快速的轉(zhuǎn)變,。研究人員還注意到,,刺激或抑制谷氨酸受體能夠分別使許多神經(jīng)細(xì)胞miRNA的轉(zhuǎn)變加速和縮減,這意味著神經(jīng)細(xì)胞的活性控制著miRNA的新陳代謝,。
這些發(fā)現(xiàn)表明,,與非神經(jīng)細(xì)胞中的miRNA形成對比的是,神經(jīng)細(xì)胞中的miRNA能夠被迅速生產(chǎn)和退化,。更進(jìn)一步的實驗將著眼于這種快速轉(zhuǎn)變背后的機(jī)制研究,。
研究人員在最近出版的《細(xì)胞》(Cell)雜志上報告了這一研究成果。(生物谷Bioon.net)
生物谷推薦原文出處:
Cell DOI:10.1016/j.cell.2010.03.039
Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs
Jacek Krol, Volker Busskamp, Ilona Markiewicz, Michael B. Stadler, Sebastian Ribi, Jens Richter, Jens Duebel, Silvia Bicker, Hans J?rg Fehling, Dirk Schübeler, Thomas G. Oertner, Gerhard Schratt, Miriam Bibel, Botond Roska, Witold Filipowicz
Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.