來(lái)自美國(guó)國(guó)立衛(wèi)生研究院,霍德華休斯醫(yī)學(xué)院,,佛羅里達(dá)州立大學(xué)等處的研究人員利用一種稱為干涉測(cè)量光激活定位顯微技術(shù)(iPALM,interferometric photoactivated localization microscopy)的方法,發(fā)現(xiàn)了細(xì)胞粘著斑(focal adhesion)蛋白的顯微結(jié)構(gòu),,從而為理解這一重要的蛋白結(jié)構(gòu),以及分析蛋白功能提供了新的信息,。這一研究成果公布在Nature雜志封面上,。
這項(xiàng)研究由物理學(xué)家與生物學(xué)家共同完成,是高分辨率顯微鏡技術(shù)發(fā)展的又一成果,。近年來(lái)隨著各項(xiàng)工具方法的發(fā)展,,尤其是物理學(xué)界接二連三出現(xiàn)的重大科研進(jìn)展,顯微技術(shù)發(fā)展迅速:2008年,,本文的作者之一Harald F. Hess與另外一位研究人員利用一部在自家客廳組裝的光學(xué)顯微鏡發(fā)展出一套光敏定位顯微鏡:PALM觀察細(xì)胞中個(gè)別蛋白質(zhì)分子的位置,,從而達(dá)到了電子顯微鏡的分辨率,這是高分辨率顯微技術(shù)發(fā)展的一個(gè)里程碑,。
傳統(tǒng)光學(xué)顯微鏡受限于光的波長(zhǎng),,對(duì)于200nm以下的小東西只能搖頭興嘆。雖然電子顯微鏡可以達(dá)到奈米級(jí)的分辨率,,但通電的結(jié)果容易造成樣品的破壞,,因此能觀測(cè)的樣本也相當(dāng)有限。分子生物學(xué)家雖然可以做到把若干想觀察的蛋白質(zhì)貼上熒光卷標(biāo),,但這些蛋白質(zhì)還是經(jīng)常擠在一塊,,在顯微鏡下分不出誰(shuí)是誰(shuí)。
光敏定位顯微鏡:PALM可以用來(lái)觀察納米級(jí)生物,,相較于電子顯微鏡有更清晰的對(duì)比度,,如果給不同蛋白接上不同的熒光標(biāo)記,就能用來(lái)進(jìn)一步研究蛋白質(zhì)間的相互作用,。
這幾年高分辨率熒光顯微鏡跨越了一大步,,使得研究者可以從納米級(jí)觀測(cè)細(xì)胞突起的伸展,從而宣告200—750納米大小范圍的模糊團(tuán)塊的時(shí)代結(jié)束了。最新的這篇文章就是這一技術(shù)的新進(jìn)步,,這種iPALM是將PALM技術(shù)與光的干涉原理結(jié)合起來(lái),,將三維的分辨率提高到20 nm以內(nèi),并極大地提高了收集同樣光子后的定位精度,。
在這篇文章中,,研究人員就是通過(guò)這一新技術(shù)在納米尺度上觀測(cè)到了粘著斑的蛋白組織方式,粘著斑是細(xì)胞外基質(zhì)與一個(gè)細(xì)胞的肌動(dòng)蛋白細(xì)胞骨架之間的物理聯(lián)系,,它們能通過(guò)整聯(lián)蛋白(或稱整合素)發(fā)揮作用,。它們?cè)谌梭w生理中具有根本性的重要性,因?yàn)樗鼈冋{(diào)控細(xì)胞粘附,、機(jī)械傳感和控制細(xì)胞生長(zhǎng)及分化的信號(hào),。
研究人員發(fā)現(xiàn)這種蛋白是組織良好的超級(jí)結(jié)構(gòu),整聯(lián)蛋白和肌動(dòng)蛋白被一個(gè)40納米長(zhǎng),、由部分重疊的蛋白特異性層組成的核分開,,又被人踝蛋白(talin)聯(lián)系在一起。這種多層架構(gòu)產(chǎn)生三個(gè)或更多單獨(dú)的腔室,,它們調(diào)控粘著斑的相互獨(dú)立的功能,。
除了利用這種顯微技術(shù),來(lái)自約翰霍普金斯醫(yī)學(xué)院的研究人員還利用一種雙聚物探針,,分別吸引兩種蛋白,,從而能了解一個(gè)蛋白為什么和如何在一個(gè)位點(diǎn)是用于細(xì)胞分裂和生長(zhǎng),而在另外一個(gè)位點(diǎn)卻是意味著細(xì)胞死亡,,利用這種新型技術(shù),,研究人員能在細(xì)胞的各處快速操縱蛋白活性。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09621
Nanoscale architecture of integrin-based cell adhesions
Pakorn Kanchanawong1,5, Gleb Shtengel2,5, Ana M. Pasapera1, Ericka B. Ramko3, Michael W. Davidson3,4, Harald F. Hess2 & Clare M. Waterman1
1.National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
2.Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA
3.National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida 32310, USA
4.Department of Biological Science, The Florida State University, Tallahassee, Florida 32306, USA
5.These authors contributed equally to this work.
Correspondence to: Clare M. Waterman1 Email: [email protected]
Correspondence to: Harald F. Hess2 Email: [email protected]
Correspondence to: Michael W. Davidson3,4 Email: [email protected]
Top of pageAbstractCell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing1, 2. Focal adhesions are multifunctional organelles that mediate cell–ECM adhesion, force transmission, cytoskeletal regulation and signalling1, 2, 3. Focal adhesions consist of a complex network4 of trans-plasma-membrane integrins and cytoplasmic proteins that form a?<200-nm plaque5, 6 linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine7, 8. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy)9 to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ~40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin’s polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.