5月9日美國密歇根大學(xué)與四川大學(xué)的研究人員聯(lián)合在國際著名期刊美國《國家科學(xué)院院刊》(PNAS)上發(fā)表了題為“Measuring the evolutionary rate of protein–protein interaction”的研究論文。
領(lǐng)導(dǎo)這一研究的是著名華人學(xué)者張建之教授,。其早年畢業(yè)于復(fù)旦大學(xué),。1998年美國賓西法尼亞州立大學(xué)遺傳學(xué)博士畢業(yè),師從著名的分子進(jìn)化學(xué)家根井正利(Masatoshi Nei),,現(xiàn)為,、美國密歇根大學(xué)生態(tài)學(xué)進(jìn)化生物學(xué)系教授,是基因重復(fù),、適應(yīng)進(jìn)化等研究領(lǐng)域國際著名學(xué)者,,已在Nature Genetics、PNAS,、Trends Genetics等刊物上發(fā)表論文數(shù)十篇,。四川大學(xué)的徐懷亮教授作為作者之一參與了該研究項(xiàng)目。
生命是由基本組成物質(zhì)(蛋白質(zhì),、核酸等)經(jīng)過漫長的進(jìn)化演變形成的復(fù)雜系統(tǒng),,因此生物大分子的進(jìn)化研究對(duì)于揭示生命的起源和進(jìn)化機(jī)制有著非常重要的意義。盡管科學(xué)家們通過大量研究已獲得了數(shù)百種物種成千上萬個(gè)基因編碼蛋白質(zhì)序列進(jìn)化的信息,,然而與之相對(duì)應(yīng)的蛋白質(zhì)功能進(jìn)化的信息卻仍知之甚少,,尤其在基因組水平。究其原因主要是由于蛋白質(zhì)之間的功能存在這極大的多樣性,,因此很難精確估計(jì)和比較蛋白質(zhì)的功能進(jìn)化速率,。由于大部分的蛋白質(zhì)是通過與其他蛋白質(zhì)之間的相互作用(PPI)發(fā)揮其功能的,而蛋白質(zhì)間的相互作用可通過標(biāo)準(zhǔn)分析進(jìn)行測(cè)定,,因此估算蛋白質(zhì)間相互作用的進(jìn)化速率可用來測(cè)量蛋白質(zhì)功能的進(jìn)化速率。
在這篇文章中,,研究人員對(duì)克魯雄酵母(Kluyveromyces waltii)蛋白質(zhì)間潛在的87種相互作用進(jìn)行了實(shí)驗(yàn)檢測(cè)分析,。在過去的研究中科學(xué)家們?cè)敿?xì)報(bào)道過親緣關(guān)系接近的芽殖釀酒酵母中一對(duì)一同源物的相互作用。研究人員進(jìn)一步將已獲得的分析結(jié)果與來自其他真核生物的數(shù)據(jù)進(jìn)行比較,,從而推測(cè)出蛋白質(zhì)相互作用的進(jìn)化速率為(2.6 ± 1.6) × 10?10/每PPI每年,。這一速率相對(duì)于通過蛋白氨基酸置換數(shù)量分析獲得的蛋白質(zhì)序列進(jìn)化速率要低三個(gè)數(shù)量級(jí),。
研究結(jié)果表明蛋白質(zhì)分子極其緩慢的功能進(jìn)化有可能是導(dǎo)致生命在分子及細(xì)胞水平驚人保守性的主要原因,這意味著科學(xué)家們可以在更多的簡(jiǎn)單生物體開展人類疾病的機(jī)制研究,。(生物谷Bioon.com)
生物谷推薦原文出處:
Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1104695108
Measuring the evolutionary rate of protein–protein interaction
Qian, Wenfeng; He, Xionglei; Chan, Edwin; Xu, Huailiang; Zhang, Jianzhi
Despite our extensive knowledge about the rate of protein sequence evolution for thousands of genes in hundreds of species,the corresponding rate of protein function evolution is virtually unknown, especially at the genomic scale. This lack of knowledgeis primarily because of the huge diversity in protein function and the consequent difficulty in gauging and comparing ratesof protein function evolution. Nevertheless, most proteins function through interacting with other proteins, and protein–proteininteraction (PPI) can be tested by standard assays. Thus, the rate of protein function evolution may be measured by the rateof PPI evolution. Here, we experimentally examine 87 potential interactions between Kluyveromyces waltii proteins, whose one to one orthologs in the related budding yeast Saccharomyces cerevisiae have been reported to interact. Combining our results with available data from other eukaryotes, we estimate that the evolutionaryrate of protein interaction is (2.6 ± 1.6) × 10?10 per PPI per year, which is three orders of magnitude lower than the rate of protein sequence evolution measured by the numberof amino acid substitutions per protein per year. The extremely slow evolution of protein molecular function may account forthe remarkable conservation of life at molecular and cellular levels and allow for studying the mechanistic basis of humandisease in much simpler organisms.