韓國教育科技部和韓國研究財團5月5日報道,,韓國西江大學(xué)趙圭峰(音譯)教授領(lǐng)導(dǎo)的研究小組,,近日成功開發(fā)了可在短時間內(nèi)正確分析遺傳基因(DNA)信息的下一代遺傳基因分析技術(shù),。
該技術(shù)可將遺傳基因分子鏈條長度拉長為接近理論長度90%的19微米,并將其放入納米通道進行分析,,正確度比以往提高了1.5倍,。研究小組稱,為迅速分析大量遺傳基因信息,,必須最大限度地拉長遺傳基因鏈條,,此次研究結(jié)果實現(xiàn)了這一目標,,可迅速而準確地分析大量遺傳基因信息。
該項研究成果已在英國皇家化學(xué)會《芯片實驗室》(Lab on a chip)上作為封面論文刊登,。(生物谷Bioon.com)
生物谷推薦原文出處:
Lab on a chip DOI: 10.1039/C0LC00680G
Nanochannel confinement: DNA stretch approaching full contour length
Yoori Kim, Ki Seok Kim, Kristy L. Kounovsky, Rakwoo Chang, Gun Young Jung, Juan J. dePablo, Kyubong Jo and David C. Schwartz
Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 μm ± 1.1 μm for YOYO-1 stained λ DNA (21.8 μm contour length) in 250 nm × 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.