根據(jù)圣路易斯華盛頓大學(xué)醫(yī)學(xué)院的科學(xué)家,,腫瘤細(xì)胞的DNA序列可用于指導(dǎo)免疫系統(tǒng)攻擊癌癥。
此面小鼠上的研究發(fā)表在2月8日的Nature上,。
免疫系統(tǒng)依賴于一個(gè)復(fù)雜的警報(bào)網(wǎng)絡(luò)系統(tǒng),,這個(gè)系統(tǒng)針對(duì)并安全地制動(dòng)決定何時(shí)攻擊并攻擊什么,。新研究結(jié)果指出,科學(xué)家可能現(xiàn)在能將DNA測(cè)序數(shù)據(jù)與他們的觸發(fā)器與靶標(biāo)認(rèn)識(shí)相結(jié)合,,這種認(rèn)識(shí)使免疫警鐘更精確地發(fā)展癌癥疫苗與癌癥其他免疫治療法,。
"我們已經(jīng)有鑒定免疫治療特異靶標(biāo)的方法,,但是他們具有技術(shù)挑戰(zhàn)性,、極端勞動(dòng)密集性,經(jīng)常需花費(fèi)不止年的時(shí)間來完成",,通訊作者Robert Schreiber博士說,他是醫(yī)學(xué)院病理學(xué)與免疫學(xué)校友教授,、華盛頓大學(xué)醫(yī)學(xué)院與巴恩斯猶太醫(yī)院Alvin J. Siteman癌癥中心腫瘤免疫學(xué)項(xiàng)目的共同主持人,。"這些困難已存在開發(fā)癌癥患者個(gè)性化免疫療法的路上,,這些患者常需要即刻治療,。據(jù)我們的知識(shí),,這是在DNA測(cè)序幫助下所提供的較快速方法的最早研究中的一項(xiàng)。這開辟了所有令人興奮的可能性,。"
科學(xué)家一直認(rèn)為,,免疫系統(tǒng)能將癌癥識(shí)別為一種自行及在疫苗或免疫療法幫助下的威脅,,它們幫助提醒免疫系統(tǒng)警覺由癌癥所構(gòu)成的危險(xiǎn),。一旦癌癥被識(shí)別,免疫系統(tǒng)將會(huì)發(fā)展攻擊正在生長癌細(xì)胞的能力直到腫瘤被根除或免疫系統(tǒng)資源被耗竭,。
Schreiber和他的同事已經(jīng)指出,,免疫系統(tǒng)與癌癥之間的相互作用更復(fù)雜,。他們的被稱為癌癥免疫編輯的理論顯示,腫瘤細(xì)胞中的一些突變都很容易被免疫系統(tǒng)識(shí)別為一種威脅,。如果免疫系統(tǒng)檢測(cè)出這些癌癥細(xì)胞中的突變,免疫系統(tǒng)攻擊它們直到被破壞,。
在這一點(diǎn)上,,癌癥可能被根除。但是,,癌癥被免疫系統(tǒng)所"編輯" 也是有可能的,,這導(dǎo)致清除所有含有重要的、易被識(shí)別的突變的細(xì)胞,。其余的腫瘤細(xì)胞可繼續(xù)生長或進(jìn)入休眠期,,在這個(gè)時(shí)期里這些細(xì)胞不會(huì)被破壞但在免疫系統(tǒng)的檢查中。
對(duì)于新的研究,,Schreiber和他的同事想要界定義尚未與免疫系統(tǒng)相互作用的腫瘤遺傳學(xué)。為了這樣做,,他們?cè)诿庖呦到y(tǒng)障礙的小鼠上誘導(dǎo)腫瘤,。他們與測(cè)序癌癥細(xì)胞基因的華盛頓大學(xué)基因組研究所科學(xué)家共同合作。
"直到最近,,這項(xiàng)工作因?yàn)樗婕暗馁M(fèi)用已經(jīng)不實(shí)用了",, Schreiber說,,"但是技術(shù)已經(jīng)改善,價(jià)格也下降,,現(xiàn)在用幾千美元而不是一百萬美元就可獲得遺傳學(xué)信息是可能的。"
"通過比較癌癥細(xì)胞與正常細(xì)胞的遺傳數(shù)據(jù),,科學(xué)家鑒定出腫瘤細(xì)胞基因的3743個(gè)突變。下一步,,他們轉(zhuǎn)向蛋白序列在線數(shù)據(jù)庫,這里的蛋白可能被一個(gè)關(guān)鍵免疫傳感器識(shí)別,。這有助于他們將焦點(diǎn)縮小到幾個(gè)突變的基因,,這幾個(gè)突變基因的被改變的蛋白質(zhì)似乎最有可能觸發(fā)免疫系統(tǒng)攻擊,。這些突變蛋白的其中一個(gè),即紅細(xì)胞定形素-β2(spectrin-beta2)的突變形式,,出現(xiàn)在被免疫系統(tǒng)攻擊的所有腫瘤細(xì)胞中,,不在任何被忽視的細(xì)胞中。
研究人員克隆了這一突變基因,,并把它放入缺少此突變的其他小鼠腫瘤細(xì)胞中,。當(dāng)移植入免疫功能正常小鼠時(shí),,制造突變體紅細(xì)胞定形素-β2蛋白的腫瘤細(xì)胞被免疫細(xì)胞攻擊和清除,。
"現(xiàn)在正在進(jìn)行的許多癌癥基因組計(jì)劃正在尋找"驅(qū)動(dòng)"突變,或?qū)е掳┌Y的突變",, Schreiber說,,"我們的研究結(jié)果表明,,可能有可幫助我們使免疫系統(tǒng)攻擊癌癥的測(cè)序數(shù)據(jù)的附加信息",。
Schreiber稱這種在此研究中鑒定的紅細(xì)胞定形素-β2突變?yōu)?quot;低掛果水果",, 注意到這是免疫系統(tǒng)的一個(gè)紅旗,,它的正常出現(xiàn)導(dǎo)致免疫系統(tǒng)沒有任何免疫療法的提示而突襲癌癥細(xì)胞,。
他和他的同事目前正在測(cè)序具正常免疫系統(tǒng)小鼠中生長的腫瘤的DNA,,以觀察他們是否鑒定免疫系統(tǒng)不容易區(qū)分的突變。
"這個(gè)觀點(diǎn)將會(huì)產(chǎn)生一種疫苗,,這種疫苗會(huì)幫助免疫系統(tǒng)識(shí)別和攻擊癌癥中6或7個(gè)這些突變的蛋白",,他說,,"這在治療上可能是非常有益的。"(生物谷bioon.com)
doi:10.1038/nature10755
PMC:
PMID:
Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting
Hirokazu Matsushita, Matthew D. Vesely, Daniel C. Koboldt, Charles G. Rickert, Ravindra Uppaluri, Vincent J. Magrini, Cora D. Arthur, J. Michael White, Yee-Shiuan Chen, Lauren K. Shea, Jasreet Hundal, Michael C. Wendl, Ryan Demeter, Todd Wylie, James P. Allison, Mark J. Smyth, Lloyd J. Old, Elaine R. Mardis, Robert D. Schreiber
Abstract Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape1, 2, 3,4, 5. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2?/? mice that phenotypically resemble nascent primary tumour cells1, 3, 5. Using class I prediction algorithms, we identify mutant spectrin-β2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-β2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.