水稻的分蘗是決定產量的一個重要農藝性狀,,適當的分蘗數目直接決定水稻的產量。此外,,水稻的分蘗也是在植物生物學中決定株型建成的一個核心科學問題,。在過去十余年,植物基因組學國家重點實驗室李家洋院士及其合作者對水稻分蘗的調控機制進行了系統(tǒng)深入的研究,。
在早期的工作中,,李家洋院士等以水稻單分蘗突變體moc1(monoculm 1)為材料,解析了其野生型基因MOC1調控分蘗的分子機理,,發(fā)現(xiàn)MOC1編碼一個植物特異的轉錄因子,。MOC1控制分蘗芽的起始和生長等過程,是調控分蘗芽生長發(fā)育的主控因子(Li et al., Nature, 422: 618-621, 2003),。MOC1的發(fā)現(xiàn)和功能分析是單子葉植物分枝機理研究領域的重大突破,,引起了國內外學術界的廣泛關注,。
MOC1作為一個調控分蘗的主控因子,其本身的調控機制機理不甚明了,。在進一步的研究中,,李家洋院士與中國水稻所錢前研究員等合作研究發(fā)現(xiàn)水稻TAD1 (TILLERING AND DWARF 1) 直接調控MOC1,因而揭示了調控水稻分蘗的一個重要分子機理,。
通過對多分蘗突變體tad1以及單分蘗突變體moc1的遺傳分析,,李家洋院士等發(fā)現(xiàn)TAD1作用于MOC1的上游。生化研究發(fā)現(xiàn),,TAD1和MOC1位于同一個蛋白復合物中并直接互作,。分子遺傳學分析發(fā)現(xiàn),TAD1編碼一個細胞分裂后期啟動復合物(anaphase-promoting complex,,簡稱APC/C)的共激活蛋白,。APC/C是一個在真核生物中功能高度保守的E3泛素連接酶,參與降解細胞周期中的關鍵調控因子,,從而促進細胞周期的進程,。李家洋院士等證明TAD1直接作用于MOC1,導致后者以依賴于細胞周期進程的方式降解,。該項研究揭示了通過細胞周期調控分蘗以及植物株型建成的新機制,。
李家洋院士等對MOC1、調控分蘗角度的LAZY1 (Li et al., Cell Research, 17: 402-410, 2007),、理想株型基因IDEAL PLANT ARCHITECTURE1(IPA1; Jiao et al., Nature Genetics, 42: 541-544, 2010)以及對TAD1等關鍵因子的系統(tǒng)深入功能解析,,建立了調控水稻株型建成的基本工作模型。(生物谷 bioon.com)
doi:10.1038/ncomms1743
PMC:
PMID:
Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering
Cao Xu, Yonghong Wang, Yanchun Yu, Jingbo Duan, Zhigang Liao, Guosheng Xiong, Xiangbing Meng, Guifu Liu, Qian Qian,,Jiayang Li
A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture.