水稻的分蘗是決定產(chǎn)量的一個重要農(nóng)藝性狀,,適當(dāng)?shù)姆痔Y數(shù)目直接決定水稻的產(chǎn)量,。此外,,水稻的分蘗也是在植物生物學(xué)中決定株型建成的一個核心科學(xué)問題,。在過去十余年,,植物基因組學(xué)國家重點實驗室李家洋院士及其合作者對水稻分蘗的調(diào)控機制進行了系統(tǒng)深入的研究,。
在早期的工作中,李家洋院士等以水稻單分蘗突變體moc1(monoculm 1)為材料,,解析了其野生型基因MOC1調(diào)控分蘗的分子機理,,發(fā)現(xiàn)MOC1編碼一個植物特異的轉(zhuǎn)錄因子。MOC1控制分蘗芽的起始和生長等過程,,是調(diào)控分蘗芽生長發(fā)育的主控因子(Li et al., Nature, 422: 618-621, 2003),。MOC1的發(fā)現(xiàn)和功能分析是單子葉植物分枝機理研究領(lǐng)域的重大突破,引起了國內(nèi)外學(xué)術(shù)界的廣泛關(guān)注,。
MOC1作為一個調(diào)控分蘗的主控因子,,其本身的調(diào)控機制機理不甚明了。在進一步的研究中,,李家洋院士與中國水稻所錢前研究員等合作研究發(fā)現(xiàn)水稻TAD1 (TILLERING AND DWARF 1) 直接調(diào)控MOC1,,因而揭示了調(diào)控水稻分蘗的一個重要分子機理。
通過對多分蘗突變體tad1以及單分蘗突變體moc1的遺傳分析,,李家洋院士等發(fā)現(xiàn)TAD1作用于MOC1的上游,。生化研究發(fā)現(xiàn),TAD1和MOC1位于同一個蛋白復(fù)合物中并直接互作,。分子遺傳學(xué)分析發(fā)現(xiàn),,TAD1編碼一個細胞分裂后期啟動復(fù)合物(anaphase-promoting complex,簡稱APC/C)的共激活蛋白,。APC/C是一個在真核生物中功能高度保守的E3泛素連接酶,,參與降解細胞周期中的關(guān)鍵調(diào)控因子,從而促進細胞周期的進程,。李家洋院士等證明TAD1直接作用于MOC1,,導(dǎo)致后者以依賴于細胞周期進程的方式降解。該項研究揭示了通過細胞周期調(diào)控分蘗以及植物株型建成的新機制,。
李家洋院士等對MOC1,、調(diào)控分蘗角度的LAZY1 (Li et al., Cell Research, 17: 402-410, 2007)、理想株型基因IDEAL PLANT ARCHITECTURE1(IPA1; Jiao et al., Nature Genetics, 42: 541-544, 2010)以及對TAD1等關(guān)鍵因子的系統(tǒng)深入功能解析,,建立了調(diào)控水稻株型建成的基本工作模型,。(生物谷 bioon.com)
doi:10.1038/ncomms1743
PMC:
PMID:
Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering
Cao Xu, Yonghong Wang, Yanchun Yu, Jingbo Duan, Zhigang Liao, Guosheng Xiong, Xiangbing Meng, Guifu Liu, Qian Qian,Jiayang Li
A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture.