關(guān)鍵詞: Nature 測(cè)序技術(shù) 解碼 DNA 折疊方式
染色體DNA包含著所有有機(jī)體的信息藍(lán)圖,人類有23對(duì)染色體,,可以在人體發(fā)育的不同階段知道基因如何來(lái)調(diào)節(jié),。盡管科學(xué)家們發(fā)明出了理解DNA一維結(jié)構(gòu)的方法,,但是截至到現(xiàn)在,,對(duì)于DNA各個(gè)不同部分在細(xì)胞核中是如何折疊的卻并不清楚。近日,,來(lái)自路德維希癌癥研究所的研究人員運(yùn)用一種強(qiáng)大的DNA測(cè)序方法,,研究了細(xì)胞核染色體中DNA的三維折疊結(jié)構(gòu),分析了DNA基本的折疊原則以及在基因調(diào)節(jié)中扮演的角色,。相關(guān)研究成果刊登在了4月11日的國(guó)際雜志Nature 上,。
在一般的生物學(xué)書中,當(dāng)你看到一張圖片描寫基因的時(shí)候,,通常會(huì)將基因描述成線性,,實(shí)際上,基因是以某種方式被排列的,,基因的兩側(cè)可能會(huì)互相成線性,,非常接近與3-D形式。當(dāng)我們學(xué)到DNA在細(xì)胞核中是如何折疊的,,我們便在大腦中有一幅關(guān)于基因調(diào)節(jié)過(guò)程的完美圖片,,研究者Ludwig運(yùn)用一種被稱為Hi-C的基于測(cè)序的方法來(lái)檢測(cè)染色體的3-D結(jié)構(gòu),使用此項(xiàng)技術(shù),,研究者們就可以對(duì)來(lái)自每一個(gè)染色體的配對(duì)反應(yīng)建立圖譜,,通過(guò)建立圖譜來(lái)推測(cè)DNA的基本折疊樣式,。DNA可以將許多稱為拓?fù)浣Y(jié)構(gòu)域的基本結(jié)構(gòu)域折疊進(jìn)來(lái),而每一個(gè)結(jié)構(gòu)域平均有100萬(wàn)個(gè)堿基對(duì),。通過(guò)比較,,人類的基因組有超過(guò)30億的基本堿基對(duì)那么大。
通過(guò)檢測(cè)反應(yīng)圖譜,,研究者發(fā)現(xiàn)拓?fù)浣Y(jié)構(gòu)域是最基本的折疊單元,,而且研究者們通過(guò)比對(duì)不同的細(xì)胞類型確定了他們的發(fā)現(xiàn),在不同類型中,,研究者發(fā)現(xiàn)DNA折疊成拓?fù)浣Y(jié)構(gòu)域是持續(xù)的。來(lái)自馬薩諸塞大學(xué)的研究者的研究發(fā)現(xiàn)也支持了Ludwig的研究,,他們通過(guò)研究老鼠胚胎干細(xì)胞的X染色體部分以及神經(jīng)細(xì)胞和成纖維細(xì)胞,,發(fā)現(xiàn)DNA的折疊樣式和Ludwig是一樣的。
這只是通過(guò)三維立體成像理解細(xì)胞核形成過(guò)程中的一個(gè)開始,,我們知道,,一些癌癥包括許多白血病,都是因?yàn)閮蓚€(gè)基因之間的直觀所引起的突變,。但是對(duì)于這些置換是如何調(diào)節(jié)的或者是否這些置換源于隨機(jī)事件我們卻不得而知,。有可能染色體的空間結(jié)構(gòu)可以讓我們更好的理解這些置換是如何發(fā)生的,更重要的是提供給了我們一些線索,,讓我們可以采取措施阻止這些基因置換的發(fā)生或者延緩這種效應(yīng),。(生物谷:T.Shen編譯)
Copyright ©版權(quán)歸生物谷所有,若未得到Bioon授權(quán),,請(qǐng)勿轉(zhuǎn)載,。
doi:10.1038/nature11082
PMC:
PMID:
Topological domains in mammalian genomes identified by analysis of chromatin interactions
Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S. Liu & Bing Ren
The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories1. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide2. Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term ‘topological domains’, as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.