根據(jù)于2012年7月16日在線發(fā)表在PNAS期刊上的一篇論文,,來自美國康奈爾大學(xué)的研究人員開發(fā)出一種新方法來研究哺乳動(dòng)物細(xì)胞內(nèi)蛋白如何折疊,,可能有朝一日導(dǎo)致人們開發(fā)出更好的流感疫苗。這種方法允許研究人員對(duì)細(xì)胞中處于不同蛋白合成階段的被稱作核糖體的蛋白合成機(jī)制拍攝快照,。他們?nèi)缓髮⑦@些快照拼接在一起從而重新構(gòu)建蛋白合成期間它們?nèi)绾握郫B。
細(xì)胞內(nèi),,蛋白折疊非??欤恍鑾孜⒚?,因此多肽鏈如何折疊從而形成蛋白結(jié)構(gòu),,長期以來都是一個(gè)謎。論文通訊作者Shu-Bing Qian說,,他們的方法能夠在核糖體合成蛋白的同時(shí)研究蛋白折疊,。
簡言之,mRNA攜帶來自DNA的蛋白編碼信息到核糖體中,,接著核糖體將這些編碼信息范圍組成蛋白的氨基酸鏈,。在此之前,其他研究人員已開發(fā)出一種定位核糖體在mRNA上的精確位置,。Qian和同事們進(jìn)一步改進(jìn)這種技術(shù)來選擇性地富集核糖體中的某一部分,,從而能夠拍攝蛋白合成過程不同階段的快照。
在這篇論文中,,研究人員也描述了利用這種技術(shù)來更好地研究一種被稱作血凝素(hemagglutinin, HA)的蛋白,,它位于甲型流感病毒(influenza A virus)的表面上;允許該病毒感染宿主細(xì)胞的HA結(jié)構(gòu)(折疊),。
流感疫苗基于識(shí)別諸如HA之類的蛋白的抗體,。但是流感病毒擁有比較高的突變率來躲避抗體檢測。因此,,流感疫苗經(jīng)常失效,,這是因?yàn)椴《颈砻娴鞍装l(fā)生突變。比如,,HA是流感病毒表面蛋白中突變率最高的,。
研究人員證實(shí)他們的技術(shù)能夠鑒定出當(dāng)HA發(fā)生突變時(shí),這種折疊過程如何變化,。如果人們知道突變?nèi)绾巫兓恼郫B圖片,,那么它將有助于設(shè)計(jì)出一種更好的疫苗。(生物谷:Bioon.com)
本文編譯自Researchers piece together how proteins fold
doi: 10.1073/pnas.1208138109
PMC:
PMID:
Monitoring cotranslational protein folding in mammalian cells at codon resolution
Yan Hana, Alexandre Davidb, Botao Liuc, Javier G. Magadánb, Jack R. Benninkb, Jonathan W. Yewdellb, and Shu-Bing Qian
How the ribosome-bound nascent chain folds to assume its functional tertiary structure remains a central puzzle in biology. In contrast to refolding of a denatured protein, cotranslational folding is complicated by the vectorial nature of nascent chains, the frequent ribosome pausing, and the cellular crowdedness. Here, we present a strategy called folding-associated cotranslational sequencing that enables monitoring of the folding competency of nascent chains during elongation at codon resolution. By using an engineered multidomain fusion protein, we demonstrate an efficient cotranslational folding immediately after the emergence of the full domain sequence. We also apply folding-associated cotranslational sequencing to track cotranslational folding of hemagglutinin in influenza A virus-infected cells. In contrast to sequential formation of distinct epitopes, the receptor binding domain of hemagglutinin follows a global folding route by displaying two epitopes simultaneously when the full sequence is available. Our results provide direct evidence of domain-wise global folding that occurs cotranslationally in mammalian cells.