如今,,來自美國西北大學物理科學腫瘤學中心(Physical Sciences-Oncology Center, PS-OC)的研究人員的三項開創(chuàng)性研究報道了他們在方法上取得的重要進步,,這將使得人們更好地理解在正常細胞和癌細胞中,,基因表達是如何受到調(diào)控的,同時也可能導(dǎo)致人們開發(fā)出更加有效的治療試劑來治療癌癥病人,。這三篇論文最近分別在Nature Genetics,、Nature Biotechnology和Nature期刊上,,可能有助于揭示控制基因轉(zhuǎn)錄的機制,。
根據(jù)2006年發(fā)表在Nature期刊上一篇論文,通信作者 Jonathan Widom和Eran Segal 描述了一種繪制核小體的新方法。越來越清楚的是,,在人體內(nèi),,負責DNA組裝成染色質(zhì)的細胞裝置發(fā)生突變是腫瘤產(chǎn)生的主要推動力。染色質(zhì)是由DNA和蛋白組成的復(fù)合物,,當遭受壓縮時會形成染色體,。這項研究允許人們闡述在細胞中染色質(zhì)組裝機制,從而有助于理解在癌癥中是什么發(fā)生偏差和如何修復(fù)這種偏差,。
DNA第一密碼就是DNA遺傳密碼,,能夠確定細胞蛋白的組成。2006年前,,Widom和Segal就已在這篇論文中報道,,他們發(fā)現(xiàn)第二種DNA密碼能夠解釋DNA環(huán)繞著組蛋白復(fù)合物形成的線軸樣結(jié)構(gòu)--核小體--的布局。
根據(jù)2012年5月27日在線發(fā)表在Nature Genetics期刊上的一篇論文和2012年5月20日在線發(fā)表在Nature Biotechnology期刊上的另一篇論文,,Segal研究小組開發(fā)出出一種優(yōu)雅的實驗系統(tǒng):它能夠允許他們準確地測量不利于核小體形成的DNA序列對轉(zhuǎn)錄調(diào)節(jié)的影響,。這項新研究使得他們能夠以一種規(guī)劃好的和系統(tǒng)性的方式,同時導(dǎo)入上萬個DNA序列區(qū)域到上萬個活細胞之中---每個細胞導(dǎo)入一個DNA區(qū)域---,,而且能夠在一次實驗中非常精準地和測量每個這樣的變化產(chǎn)生的結(jié)果,。利用這種系統(tǒng),Segal研究小組證實促進核小體形成的DNA序列確實對轉(zhuǎn)錄產(chǎn)生顯著性負面的影響,。<<<相關(guān)論文參見:“Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast” 和“Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters”,。
根據(jù)第三篇于2012年6月3日在線發(fā)表在Nature期刊上的論文,研究人員描述了另一種方法上的主要進步,。這種新技術(shù)允許他們比以前更加高精準地繪制核小體在基因組上的位置,。這種技術(shù)不僅可以讓人們更好地理解轉(zhuǎn)錄調(diào)控,同時它也應(yīng)當有助于科學家們理解DNA生物學的基因特征,。<<<相關(guān)論文參見:“A map of nucleosome positions in yeast at base-pair resolution” (生物谷:Bioon.com)
本文編譯自More code cracking: Three studies help uncover the rules governing gene transcription
doi: 10.1038/nbt.2205
PMC:
PMID:
Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters
Eilon Sharon, Yael Kalma, Ayala Sharp, Tali Raveh-Sadka, Michal Levo, Danny Zeevi, Leeat Keren, Zohar Yakhini, Adina Weinberger & Eran Segal
Despite extensive research, our understanding of the rules according to which cis-regulatory sequences are converted into gene expression is limited. We devised a method for obtaining parallel, highly accurate gene expression measurements from thousands of designed promoters and applied it to measure the effect of systematic changes in the location, number, orientation, affinity and organization of transcription-factor binding sites and nucleosome-disfavoring sequences. Our analyses reveal a clear relationship between expression and binding-site multiplicity, as well as dependencies of expression on the distance between transcription-factor binding sites and gene starts which are transcription-factor specific, including a striking ~10-bp periodic relationship between gene expression and binding-site location. We show how this approach can measure transcription-factor sequence specificities and the sensitivity of transcription-factor sites to the surrounding sequence context, and compare the activity of 75 yeast transcription factors. Our method can be used to study both cis and trans effects of genotype on transcriptional, post-transcriptional and translational control.