2012年9月3日 訊 /生物谷BIOON/ --科學(xué)家們假設(shè)DNA復(fù)制錯誤會導(dǎo)致三核苷酸重復(fù)(trinucleotide repeat, TNR)序列擴(kuò)增,特別是在DNA滯后鏈的復(fù)制過程中,。如果滯后鏈能夠成功復(fù)制的話,,那么就需要對岡崎片段進(jìn)行加工,并將它們連接到連續(xù)鏈(continuous strand)上,。DNA聚合酶d負(fù)責(zé)延伸岡崎片段,,通過置換一個片段的末端同時延伸前面一個片段的末端來啟動加工的。這種新置換的DNA片段形成一個片狀結(jié)構(gòu)(flap structure),。接著片狀核酸內(nèi)切酶1(flap endonuclease 1,,即Rad27)切割這個片狀結(jié)構(gòu)。這種切割會產(chǎn)生一個切口,,隨后DNA連接酶I(Cdc9)封閉這個切口,。
在之前的研究中,其他科學(xué)家們已揭示,,Rad27和Cdc9在酵母中可能通過下調(diào)導(dǎo)致RNR較高頻率擴(kuò)增的蛋白的表達(dá),,來阻止TNR擴(kuò)增。此外,,錯配修復(fù)復(fù)合物(mismatch repai complex, MMR)Msh2-Msh3也參與TNR擴(kuò)增,,這是因?yàn)橐种扑鼈儺?dāng)中哪個亞基表達(dá),會降低亨廷頓病模式小鼠中CTG和CAG重復(fù)序列擴(kuò)增率,。由于錯錯配蛋白的功能是維持基因組完整性,,所以Msh2-Msh3在促進(jìn)重復(fù)序列增殖中的作用在過去幾年才引起科學(xué)家們的巨大興趣。
在這項(xiàng)新研究中,,來自美國羅切斯特大學(xué)和布法羅大學(xué)的研究人員證實(shí)在釀酒酵母(Saccharomyces cerevisiae)體內(nèi),,錯配修復(fù)復(fù)合物Msh2-Msh3促進(jìn)CTG和CAG重復(fù)序列擴(kuò)增。通過改變Rad27和Cdc9在岡崎片段加工期間形成的DNA中間物上的活性,,他們進(jìn)一步揭示出Msh2-Msh3促進(jìn)TNR擴(kuò)增的詳細(xì)機(jī)制,。他們利用生化方法證實(shí)在TNR存在時,,Msh2-Msh3直接干擾Rad27和Cdc9對岡崎片段的正常加工,因而產(chǎn)生較小的增量擴(kuò)增事件,。研究人員說,,這是首次在機(jī)制上證實(shí)在DNA滯后鏈復(fù)制期間,復(fù)制蛋白和修復(fù)蛋白在TNR擴(kuò)增中相互作用,。(生物谷Bioon.com)
doi: 10.1016/j.celrep.2012.06.020
PMC:
PMID:
Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions
Athena Kantartzis, Gregory M. Williams, Lata Balakrishnan, Rick L. Roberts, Jennifer A. Surtees, Robert A. Bambara
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.