2012年10月19日 訊 /生物谷BIOON/ --來(lái)自美國(guó)幾所大學(xué)的研究人員證實(shí)在實(shí)驗(yàn)室中斷裂的RNA片段能夠相互協(xié)作來(lái)自我重新組裝,。這種發(fā)現(xiàn)提示著早期生命開(kāi)始于RNA分子之間的協(xié)作,從而最終導(dǎo)致合作性復(fù)制,。
這項(xiàng)研究基于化學(xué)家Manfred Eigen提出的數(shù)學(xué)理論,。他認(rèn)為早期的RNA不能從短鏈分子成功地進(jìn)化出來(lái),因此它們必須需要幫助。他說(shuō),,這種幫助可能來(lái)自于這些分子之間的協(xié)作,。
在較早前的研究中,論文通訊作者Niles Lehman就已發(fā)現(xiàn)被稱作核酶(ribozyme)的長(zhǎng)鏈RNA分子被切割成片段后,,將它們?cè)诒P(pán)碟上放置在一起,,經(jīng)過(guò)一段之后,它們自我重組裝為它們的原始構(gòu)造,。在這項(xiàng)新的研究中,,Lehman和同事們改變了3種核酶樣品以致于它們除了一種堿基不同之外都是一樣的。每種核酶被切割成片段,,然后被在放置盤(pán)碟中,。研究人員發(fā)現(xiàn)相對(duì)于這些核酶單獨(dú)被放置在盤(pán)碟上時(shí),當(dāng)它們?cè)诒P(pán)碟上被放置在一起時(shí),,他們進(jìn)行自我重組裝的速度更快,。他們報(bào)道,這是因?yàn)樵谒鼈儺?dāng)中的一種核酶幫助第二種核酶重新組裝,,接著第二種核酶幫助第三種核酶重新組裝,,而第三種核酶反過(guò)來(lái)幫助第一種核酶重新組裝,從而形成一種封閉循環(huán)的網(wǎng)絡(luò),。
為了觀察同樣的結(jié)果在一種更加混亂的環(huán)境中是否也是可能的,,研究人員將48種被切割成片段的核酶與上百萬(wàn)個(gè)其他的RNA分子一起放置在試管中,并發(fā)現(xiàn)這些原始的48種核酶能夠找到它們其他的片段,,并且相互幫助彼此進(jìn)行重組裝,,同時(shí)再次要比它們當(dāng)中的任何一種核酶單獨(dú)放置時(shí)的更加快速。
研究人員提示著在地球的原始湯(primordial soup)中,,短RNA分子之間存在的類似協(xié)作可能允許它們進(jìn)行復(fù)制,,同時(shí)避免它們進(jìn)行復(fù)制時(shí)可能產(chǎn)生的合成錯(cuò)誤,這是因?yàn)閿?shù)學(xué)模型提示著這樣的錯(cuò)誤將導(dǎo)致進(jìn)化死亡(evolutionary death),。這種協(xié)作將允許它們進(jìn)化為更長(zhǎng)的更復(fù)雜的RNA分子并最終進(jìn)化為今天存在的所有其他分子,。(生物谷Bioon.com)
doi: 10.1038/nature11549
PMC:
PMID:
Spontaneous network formation among cooperative RNA replicators
Nilesh Vaidya, Michael L. Manapat, Irene A. Chen, Ramon Xulvi-Brunet, Eric J. Hayden & Niles Lehman
The origins of life on Earth required the establishment of self-replicating chemical systems capable of maintaining and evolving biological information. In an RNA world, single self-replicating RNAs would have faced the extreme challenge of possessing a mutation rate low enough both to sustain their own information and to compete successfully against molecular parasites with limited evolvability. Thus theoretical analyses suggest that networks of interacting molecules were more likely to develop and sustain life-like behaviour. Here we show that mixtures of RNA fragments that self-assemble into self-replicating ribozymes spontaneously form cooperative catalytic cycles and networks. We find that a specific three-membered network has highly cooperative growth dynamics. When such cooperative networks are competed directly against selfish autocatalytic cycles, the former grow faster, indicating an intrinsic ability of RNA populations to evolve greater complexity through cooperation. We can observe the evolvability of networks through in vitro selection. Our experiments highlight the advantages of cooperative behaviour even at the molecular stages of nascent life..