據(jù)物理學(xué)家組織網(wǎng)4月8日報道,,美國華盛頓大學(xué)醫(yī)學(xué)院的科學(xué)家們已經(jīng)證明,他們能夠誘導(dǎo)細(xì)胞朝一束光移動,,這意味著,,科學(xué)家們朝用光操縱細(xì)胞來控制胰島素分泌或心率邁出了第一步,這一成果在醫(yī)療領(lǐng)域具有廣泛的應(yīng)用前景,。相關(guān)研究發(fā)表在4月8日出版的美國《國家科學(xué)院院刊》PNAS網(wǎng)絡(luò)版上,。
新研究的實驗對象是免疫細(xì)胞,該研究的主要負(fù)責(zé)人,、麻醉學(xué)教授高塔姆博士和麻醉學(xué)副教授阿吉斯·卡如那拉斯使用遺傳工程技術(shù)將感光蛋白——視蛋白引入這些免疫細(xì)胞內(nèi),,接著,只通過朝他們希望細(xì)胞移動的方向照射了一束激光,,就成功地引導(dǎo)了細(xì)胞朝該方向移動,。隨后,他們使用神經(jīng)細(xì)胞進行了同樣的實驗,,也獲得了成功,。
成功的關(guān)鍵就是“哄騙”細(xì)胞認(rèn)為視蛋白是常見的受體蛋白。“我們在使用光作為開關(guān)控制細(xì)胞的行為方面取得了成功,。”高塔姆表示,,“細(xì)胞做出某些行為是因為它們能感應(yīng)到周圍環(huán)境中的信號。在我們進行的一系列實驗中,,細(xì)胞感應(yīng)到光的出現(xiàn),。”
人體內(nèi)的很多重要功能,從神經(jīng)發(fā)育到胰島素分泌,、免疫細(xì)胞的功能以及心率等都被細(xì)胞周圍的各種關(guān)鍵受體所控制,。人類和其它動物在眼睛內(nèi)制造視蛋白,當(dāng)被光激活時,,視蛋白允許細(xì)胞進入眼睛內(nèi),,將光信號變成視力。
視蛋白屬于目前廣受關(guān)注的G蛋白偶聯(lián)受體家族中的一員,,這些G蛋白偶聯(lián)受體在視力,、觸覺,、行為、情緒,、免疫系統(tǒng)調(diào)節(jié),、心率和腫瘤擴散等領(lǐng)域起關(guān)鍵作用。
在另一項最近也出版在美國《國家科學(xué)院院刊》網(wǎng)絡(luò)版上的研究中,,高塔姆團隊通過讓神經(jīng)細(xì)胞暴露在光下,,使其長出了分支(突起),目前,,他們正使用心臟細(xì)胞進行實驗,,測試光信號是否能讓心跳加速或減速。
他們計劃用同樣的方法來了解光是否能影響胰島素的分泌,、神經(jīng)細(xì)胞的再生,;研究細(xì)胞內(nèi)的信號環(huán)路以便厘清分子通路網(wǎng)絡(luò)如何控制細(xì)胞的行為??ㄈ缒抢怪赋觯?ldquo;最終,,我們會將多種感光蛋白‘塞入’這些細(xì)胞內(nèi)。我們打算使用兩種不同波長的光,。當(dāng)照射第一束光時,,它可能會給第一個感光蛋白發(fā)送信號使心跳加快,接著,,第二束光可能會被用來讓心跳減速,。”
高塔姆強調(diào)說:“用光控制細(xì)胞的移動不僅對免疫系統(tǒng)非常重要,在胚胎發(fā)育中也可以確保制造心臟,、肝臟及其他器官的細(xì)胞好好工作,,同時對癌癥轉(zhuǎn)移研究也大有裨益。”(生物谷Bioon.com)
doi:10.1073/pnas.1220755110
PMC:
PMID:
Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration
W. K. Ajith Karunarathnea, Lopamudra Giria, Anilkumar K. Patelb, Kareenhalli V. Venkateshb,1, and N. Gautama,c,1
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors.